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Overview
Why Gradual Verification?
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Static Verification
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int findMax(Node l)
{
  int m = l->val;
  Node curr = l->next;
  while(curr != null) {
    if(curr->val > m) {
      m = curr->val;
    }
    curr = curr->next;
  }
  return m;
}



Static Verification: Does not support incrementality
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int findMax(Node l)
  requires l != NULL
  ensures max(result,l) && contains(result,l)
{
  int m = l->val;
  Node curr = l->next;
  FOLDS/UNFOLDS
  while(curr != null) { LOOP INVARIANTS
    if(curr->val > m) {
      m = curr->val;

  FOLDS/UNFOLDS
      LEMMAS
    }
    FOLDS/UNFOLDS
    curr = curr->next;
  }
  return m;
}



Dynamic Verification
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int findMax(Node l)
  ensures max(result,l) && contains(result,l) 
{
  int m = l->val;
  Node curr = l->next;
  while(curr != null) {
    if(curr->val > m) {
      m = curr->val;
    }
    curr = curr->next;
  }
  return m;
}



Dynamic Verification: Runtime overhead is too much
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int findMax(Node l)
  ensures max(result,l) && contains(result,l) 
{
  int m = l->val;
  Node curr = l->next;
  while(curr != null) {
    if(curr->val > m) {
      m = curr->val;
    }
    curr = curr->next;
  }
  return m;
}



int findMax(Node l)
  requires ?
  ensures max(result,l) &&  
  contains(result,l) 
{  
  int m = l->val;
  Node curr = l->next;
  while(curr != NULL) ? {
    if(curr->val > m) {
      m = curr->val;
    }
    curr = curr->next;
  }

  return m;
}
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Gradual Verification 
supports 

incrementality. 

Allows users to 
specify as much as 

they want.

Provides a formal 
guarantee of 
verifiability.



Gradual Verification
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int findMax(Node l)
  requires ? && l != NULL
  ensures max(result,l) && contains(result,l)
{  
  int m = l->val;
  Node curr = l->next;
  while(curr != NULL) ? && LOOP INVARIANTS {
    if(curr->val > m) {
      m = curr->val;
    }
    curr = curr->next;
  }

  return m;
}



Gradual Verification: Formal guarantee of verifiability
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int findMax(Node l)
  requires ? && l != NULL
  ensures max(result,l) && contains(result,l)
{  
  int m = l->val;
  Node curr = l->next;
  FOLDS/UNFOLDS
  while(curr != NULL) FOLDS/UNFOLDS {
    if(curr->val > m) {
      m = curr->val;
      FOLDS/UNFOLDS
      LEMMAS
    }
    FOLDS/UNFOLDS
    curr = curr->next;
  }

  return m;
}
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Static Verifier with 
Implicit Dynamic 

Frames and recursive 
Abstract predicates

Extended with Gradual FormulasGradual Guarantee: 
Verifiability and 
reducibility are 
monotone with 

respect to precision.

Conservative 
extension: Anything 

provable in the 
statically should be 

provable in the 
gradually.

Gradual C0: Design 
has been proven 

sound.
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Static 

Verification 
System
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Static Verifier with 
Implicit Dynamic 

Frames and recursive 
Abstract predicates

Extended with Gradual Formulas

Optimistic 
Static 

Verification 
System

Lifting (Garcia et al. ‘16)

Dynamic 
Verification 

System

Gradual Guarantee: 
Verifiability and 
reducibility are 
monotone with 

respect to precision.

Conservative 
extension: Anything 

provable in the 
statically should be 

provable in the 
gradually.

Gradual C0: Design 
has been proven 

sound.



Goal
Ensure Gradual C0’s 
implementation is sound and 
allow for scalable bug fixes.
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Why Property Based Testing?
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A number of 
bugs had been 

caught by hand, 
in which Gradual 
C0’s design was 

unsound
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Why Property Based Testing?
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A number of 
bugs had been 

caught by hand, 
in which Gradual 
C0’s design was 

unsound

There are no 
lightweight 
techniques 
available

Capturing the 
truthiness of a 

property’s result 
provides good 
coverage for 
finding these 

implementation 
bugs.



Three-stage Pipeline
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Reference model language
Uses Gradual C0’s 

specification language



Three-stage Pipeline
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Reference model language
Uses Gradual C0’s 

specification language

WIP: Input Generator
Test suite of examples 

that are not supposed to 
verify correctly



Three-stage Pipeline
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Reference model language
Uses Gradual C0’s 

specification language

WIP: Input Generator
Test suite of examples 

that are not supposed to 
verify correctly

Checker: Dynamic C0
Asserts runtime checks 

everywhere. 
The ground truth

Checker: Gradual C0



Checker architecture
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Input 
C0 program p

Intermediate 
Representation 
for Gradual p

Output
if S1 != S2 and 
S1 == success 

then : error
else : success

Compile & 
Exec 

Gradual p

Gradually
Verify 

Gradual p

success 
String S1 OR

error 
String S1

Wait for S2 
output

IR for 
Dynamic p

Wait for S1 
output

Dynamically 
Verify 

Dynamic p

success 
String S2 OR

error 
String S2

Checker Architecture



By Example
Evaluating Soundness of 
Gradual C0 using PBT
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-    if (x < v) {
+    if (v < x) {
      if (l != NULL) {
        root->left = tree_add_helper(l, 
x, min, v-1);
      } else {
        root->left = 
create_tree_helper(x, min, v-1);
      }
    } else {
-     if (v < x) {
+     if (x < v) {
        if (r != NULL) {
          root->right = 
tree_add_helper(r, x, v+1, max);
        } else {
          root->right = 
create_tree_helper(x, v+1, max);
        }
      }
   }

To prevent trivial failure, 
we must avoid specifying 

preconditions and 
folds/unfolds that won’t 

be met while running

The truthiness for all 
programs consists of a 
pair of file executions

Binary Search Tree 
breaking order:

left node > right node



Input Generator Architecture
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ϫт@
predicate list(struct Node ϣl) = 
  ? ٍْ (l != NULL ? acc(l->value) 
ٍْ list(l->next) : true);
@ϩи
void append(Node *root, int value)
  ϫф@requires ?;
  ϫф@ensures ? ٍْ list(root);
  {
    Node *n = root;
    while (n->next != NULL)
      ϫф@loop_invariant ?;
      n = n->next;
    n->next = alloc(Node);
    n->next->value = value;
}

We caught 4 soundness 
bugs at different 

implementation phases 
of Gradual C0



Future Work
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Check out our website to 
learn more about our work: 

S3D.cmu.edu


