
Evaluating Soundness of a
Gradual Verifier with Property

Based Testing
Jan-Paul Ramos-Dávila

Cornell University
Advised by: Jenna Wise, Jonathan Aldrich, Joshua Sunshine

Carnegie Mellon University

Overview
Why Gradual Verification?

2

Static Verification

3

int findMax(Node l)
{
 int m = l->val;
 Node curr = l->next;
 while(curr != null) {
 if(curr->val > m) {
 m = curr->val;
 }
 curr = curr->next;
 }
 return m;
}

Static Verification: Does not support incrementality

4

int findMax(Node l)
 requires l != NULL
 ensures max(result,l) && contains(result,l)
{
 int m = l->val;
 Node curr = l->next;
 FOLDS/UNFOLDS
 while(curr != null) { LOOP INVARIANTS
 if(curr->val > m) {
 m = curr->val;

 FOLDS/UNFOLDS
 LEMMAS
 }
 FOLDS/UNFOLDS
 curr = curr->next;
 }
 return m;
}

Dynamic Verification

5

int findMax(Node l)
 ensures max(result,l) && contains(result,l)
{
 int m = l->val;
 Node curr = l->next;
 while(curr != null) {
 if(curr->val > m) {
 m = curr->val;
 }
 curr = curr->next;
 }
 return m;
}

Dynamic Verification: Runtime overhead is too much

6

int findMax(Node l)
 ensures max(result,l) && contains(result,l)
{
 int m = l->val;
 Node curr = l->next;
 while(curr != null) {
 if(curr->val > m) {
 m = curr->val;
 }
 curr = curr->next;
 }
 return m;
}

int findMax(Node l)
 requires ?
 ensures max(result,l) &&
 contains(result,l)
{
 int m = l->val;
 Node curr = l->next;
 while(curr != NULL) ? {
 if(curr->val > m) {
 m = curr->val;
 }
 curr = curr->next;
 }

 return m;
}

7

Gradual Verification
supports

incrementality.

Allows users to
specify as much as

they want.

Provides a formal
guarantee of
verifiability.

Gradual Verification

8

int findMax(Node l)
 requires ? && l != NULL
 ensures max(result,l) && contains(result,l)
{
 int m = l->val;
 Node curr = l->next;
 while(curr != NULL) ? && LOOP INVARIANTS {
 if(curr->val > m) {
 m = curr->val;
 }
 curr = curr->next;
 }

 return m;
}

Gradual Verification: Formal guarantee of verifiability

9

int findMax(Node l)
 requires ? && l != NULL
 ensures max(result,l) && contains(result,l)
{
 int m = l->val;
 Node curr = l->next;
 FOLDS/UNFOLDS
 while(curr != NULL) FOLDS/UNFOLDS {
 if(curr->val > m) {
 m = curr->val;
 FOLDS/UNFOLDS
 LEMMAS
 }
 FOLDS/UNFOLDS
 curr = curr->next;
 }

 return m;
}

10

Static Verifier with
Implicit Dynamic

Frames and recursive
Abstract predicates

Extended with Gradual FormulasGradual Guarantee:
Verifiability and
reducibility are
monotone with

respect to precision.

Conservative
extension: Anything

provable in the
statically should be

provable in the
gradually.

Gradual C0: Design
has been proven

sound.

11

Static Verifier with
Implicit Dynamic

Frames and recursive
Abstract predicates

Extended with Gradual Formulas

Optimistic
Static

Verification
System

Lifting (Garcia et al. ‘16)

Gradual Guarantee:
Verifiability and
reducibility are
monotone with

respect to precision.

Conservative
extension: Anything

provable in the
statically should be

provable in the
gradually.

Gradual C0: Design
has been proven

sound.

12

Static Verifier with
Implicit Dynamic

Frames and recursive
Abstract predicates

Extended with Gradual Formulas

Optimistic
Static

Verification
System

Lifting (Garcia et al. ‘16)

Dynamic
Verification

System

Gradual Guarantee:
Verifiability and
reducibility are
monotone with

respect to precision.

Conservative
extension: Anything

provable in the
statically should be

provable in the
gradually.

Gradual C0: Design
has been proven

sound.

Goal
Ensure Gradual C0’s
implementation is sound and
allow for scalable bug fixes.

13

Why Property Based Testing?

14

A number of
bugs had been

caught by hand,
in which Gradual
C0’s design was

unsound

Why Property Based Testing?

15

A number of
bugs had been

caught by hand,
in which Gradual
C0’s design was

unsound

There are no
lightweight
techniques
available

Why Property Based Testing?

16

A number of
bugs had been

caught by hand,
in which Gradual
C0’s design was

unsound

There are no
lightweight
techniques
available

Capturing the
truthiness of a

property’s result
provides good
coverage for
finding these

implementation
bugs.

Three-stage Pipeline

17

Reference model language
Uses Gradual C0’s

specification language

Three-stage Pipeline

18

Reference model language
Uses Gradual C0’s

specification language

WIP: Input Generator
Test suite of examples

that are not supposed to
verify correctly

Three-stage Pipeline

19

Reference model language
Uses Gradual C0’s

specification language

WIP: Input Generator
Test suite of examples

that are not supposed to
verify correctly

Checker: Dynamic C0
Asserts runtime checks

everywhere.
The ground truth

Checker: Gradual C0

Checker architecture

20

Input
C0 program p

Intermediate
Representation
for Gradual p

Output
if S1 != S2 and
S1 == success

then : error
else : success

Compile &
Exec

Gradual p

Gradually
Verify

Gradual p

success
String S1 OR

error
String S1

Wait for S2
output

IR for
Dynamic p

Wait for S1
output

Dynamically
Verify

Dynamic p

success
String S2 OR

error
String S2

Checker Architecture

By Example
Evaluating Soundness of
Gradual C0 using PBT

21

22

- if (x < v) {
+ if (v < x) {
 if (l != NULL) {
 root->left = tree_add_helper(l,
x, min, v-1);
 } else {
 root->left =
create_tree_helper(x, min, v-1);
 }
 } else {
- if (v < x) {
+ if (x < v) {
 if (r != NULL) {
 root->right =
tree_add_helper(r, x, v+1, max);
 } else {
 root->right =
create_tree_helper(x, v+1, max);
 }
 }
 }

To prevent trivial failure,
we must avoid specifying

preconditions and
folds/unfolds that won’t

be met while running

The truthiness for all
programs consists of a
pair of file executions

Binary Search Tree
breaking order:

left node > right node

Input Generator Architecture

23

ϫт@
predicate list(struct Node ϣl) =
 ? ٍْ (l != NULL ? acc(l->value)
ٍْ list(l->next) : true);
@ϩи
void append(Node *root, int value)
 ϫф@requires ?;
 ϫф@ensures ? ٍْ list(root);
 {
 Node *n = root;
 while (n->next != NULL)
 ϫф@loop_invariant ?;
 n = n->next;
 n->next = alloc(Node);
 n->next->value = value;
}

We caught 4 soundness
bugs at different

implementation phases
of Gradual C0

Future Work

24

Check out our website to
learn more about our work:

S3D.cmu.edu

