
Networks Verification Programming Languages and Usability

Theorem

Formally Verified Software Defined Delay-Tolerant
Networks

Jan-Paul Ramos-Dávila

October 24, 2024

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Formally Verified Software Defined Delay-Tolerant
Networks

Jan-Paul Ramos-Dávila

October 24, 2024

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks



Networks Verification Programming Languages and Usability

DTN & SDDTN

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
DTN & SDDTN



Networks Verification Programming Languages and Usability

DTN & SDDTN

Delay-Tolerant Network

“A network architecture designed for environments with
intermittent, unreliable, and high-latency links.”

“DTNs use a store-and-forward mechanism to ensure data delivery
despite network disruptions.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Delay-Tolerant Network

“A network architecture designed for environments with
intermittent, unreliable, and high-latency links.”

“DTNs use a store-and-forward mechanism to ensure data delivery
despite network disruptions.”

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
DTN & SDDTN

Delay-Tolerant Network

Applications: Useful in space missions, underdeveloped regions, and
disaster-stricken areas.
Explanation of Functionality: What is a store-and-forward mechanism?
Keep this mechanism in mind because it will come in handy later.
- Storing data happens when a DTN node receives a data packet. This
is what we know as a “bundle”. The node stores this bundle in its local
storage.
- Waiting for an Opportunity happens when a node waits for a communica-
tion opportunity, such as a contact with another node or the availability of
a network path. During this time, the bundle remains in storage, ensuring
ti is not lost even if immediate transmission is impossible.
- Forwarding the Data happens when a connection becomes available, the
node forwards the bundle to the next hop (another node closer to the des-
tination). This process may repeat multiple times across different nodes.
- Finally, the deliver occurs when the bundle reaches the destination node
and a complete path is formed.



Networks Verification Programming Languages and Usability

DTN & SDDTN

Software-Defined Delay Tolerant Networking

“The combination of DTNs and Software-Defined Networking to
manage large-scale DTNs.”

“SDDTNs make use of centralized control for managing network
operations and ability to adapt to changing network conditions
dynamically.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Software-Defined Delay Tolerant Networking

“The combination of DTNs and Software-Defined Networking to
manage large-scale DTNs.”

“SDDTNs make use of centralized control for managing network
operations and ability to adapt to changing network conditions
dynamically.”

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
DTN & SDDTN

Software-Defined Delay Tolerant Networking

There are some basic challenges that DTNs suffer from, such as scala-
bility issues in large networks and handling dynamic / unpredictable link
conditions. SDDTNs take care of these problems, by making use of SDN
Controllers.



Networks Verification Programming Languages and Usability

DTN & SDDTN

SDN Controllers

“We gain centralized decision-making for routing and policy
enforcement, in addition to communication with data plane
elements to control network behavior.”

“Specifically, an SDDTN uses a cluster-based architecture. It
divides the network into clusters, each managed by a cluster
controller. Local and global decision-making capabilities are now
managed efficiently by the network.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

SDN Controllers

“We gain centralized decision-making for routing and policy
enforcement, in addition to communication with data plane
elements to control network behavior.”

“Specifically, an SDDTN uses a cluster-based architecture. It
divides the network into clusters, each managed by a cluster
controller. Local and global decision-making capabilities are now
managed efficiently by the network.”

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
DTN & SDDTN

SDN Controllers

There are some basic challenges that DTNs suffer from, such as scala-
bility issues in large networks and handling dynamic / unpredictable link
conditions. SDDTNs take care of these problems, by making use of SDN
Controllers.
1. Centralized Controller: The SDN controller acts as the “brain” of the
network, making decisions about how data should be routed and handled.
2. Global view: The controller has a comprehensive view of the entire
network, including the state of all nodes, available paths, and current
network conditions. 3. Centralized management: It centrally manages and
configures network policies, such as routing rules and priority handling.
This management includes: a. Determining the best paths for data to
take through the network. b. Allocating bandwidth and storage resources
to optimize network performance. c. Enforcing security rules to protect
data.
Moreover, these are ways of making sure our three basic steps from a DTN
(Store, Wait, Deliver incrementally) are efficiently and safely produced.



Networks Verification Programming Languages and Usability

DTN & SDDTN

SDN Controllers

Monitoring → Dynamic Adjustments → Policy Updates

“For example, in a natural disaster, network infrastructure might be
damaged. An SDDTN can quickly adapt to new routes and
prioritize emergency communication.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

SDN Controllers

Monitoring → Dynamic Adjustments → Policy Updates

“For example, in a natural disaster, network infrastructure might be
damaged. An SDDTN can quickly adapt to new routes and
prioritize emergency communication.”

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
DTN & SDDTN

SDN Controllers

The dynamic details of an SDDTN proceed in these three steps:
1. The SDN controller continuously monitors network conditions, such as
link availability, node status, and traffic patterns. 2. Based on the moni-
tored data, the controller can adjust the network configuration in real-time.
This includes rerouting, prioritization of critical data, and load balancing.
3. Finally, the controller can update network policies dynamically to re-
spond to changing requirements, such as during network expansion or an
emergency situation.



Networks Verification Programming Languages and Usability

SDDTN Architecture

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
SDDTN Architecture



Networks Verification Programming Languages and Usability

SDDTN Architecture

Previous work: Towards Software-Defined Delay Tolerant
Networks1

“They propose a scalable SDDTN architecture for space DTN
networks. By doing this, they explore the use of data plane
programming with the P4 language for implementing an SDDTN.”

“The paper demonstrates a proof-of-concept for translating between
different versions of the Bundle Protocol (BPv6 and BPv7). This
allows us to establish a foundation for deploying SDDTNs.”

1Authored by Dominick Ta from University of Washington and Stephanie
Booth and Rachel Dudukovich from NASA Glenn

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Previous work: Towards Software-Defined Delay Tolerant
Networks1

“They propose a scalable SDDTN architecture for space DTN
networks. By doing this, they explore the use of data plane
programming with the P4 language for implementing an SDDTN.”

“The paper demonstrates a proof-of-concept for translating between
different versions of the Bundle Protocol (BPv6 and BPv7). This
allows us to establish a foundation for deploying SDDTNs.”

1Authored by Dominick Ta from University of Washington and Stephanie
Booth and Rachel Dudukovich from NASA Glenn

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
SDDTN Architecture

Previous work: Towards Software-Defined Delay
Tolerant Networksa

aAuthored by Dominick Ta from University of
Washington and Stephanie Booth and Rachel
Dudukovich from NASA Glenn

The P4 programming language is a language for specifying how data plane
devices process packets. Remember that the data plane just refers to
the part of the network infrastructure that is responsible for the actual
forwarding and handling of data packets or bundles as they traverse.
The main motivating factor behind this translation for BPv6 and BPv7
is that while newer deployments are adopting BPv7 due to its enhanced
features and improvements, legacy systems still make use of BPv6. This
also means that communication can continue uninterrupted.



Networks Verification Programming Languages and Usability

SDDTN Architecture

Architecture

▶ Clusters: Each containing several DTN nodes and a cluster
controller.

▶ Control Plane Links: Reliable links connecting DTN nodes
to their respective cluster controller.

▶ Local Controller: Handles decisions independently when
disconnected from the cluster controller.

▶ Global Controller: Facilitates the distribution of contact
plans and network updates.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Architecture

▶ Clusters: Each containing several DTN nodes and a cluster
controller.

▶ Control Plane Links: Reliable links connecting DTN nodes
to their respective cluster controller.

▶ Local Controller: Handles decisions independently when
disconnected from the cluster controller.

▶ Global Controller: Facilitates the distribution of contact
plans and network updates.

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
SDDTN Architecture

Architecture

This architecture ensures a reliable communication strategy for volatile
environments.



Networks Verification Programming Languages and Usability

SDDTN Architecture

Architecture Implementation

Match-Action Pipeline
“The algorithm in programmable network devices where packets are
processed by matching specific fields against predefined criteria and
executing corresponding actions.”
Match Stage
“Evaluates packet headers or other metadata.”
Action Stage
“Performs operations like forwarding, modifying, or dropping
packets based on the match results.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Architecture Implementation

Match-Action Pipeline
“The algorithm in programmable network devices where packets are
processed by matching specific fields against predefined criteria and
executing corresponding actions.”
Match Stage
“Evaluates packet headers or other metadata.”
Action Stage
“Performs operations like forwarding, modifying, or dropping
packets based on the match results.”20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
SDDTN Architecture

Architecture Implementation

So what are the predefined criteria setup in this paper?



Networks Verification Programming Languages and Usability

SDDTN Architecture

Architecture Criteria

Checksum Updates
“Adjusts checksums as packets that are translated between protocol
versions.”
Field Modifications
“Alters packet fields to conform to new protocol specifications.”
Routing Decisions
“Determines the next hop based on destination addresses and other
metadata.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Architecture Criteria

Checksum Updates
“Adjusts checksums as packets that are translated between protocol
versions.”
Field Modifications
“Alters packet fields to conform to new protocol specifications.”
Routing Decisions
“Determines the next hop based on destination addresses and other
metadata.”

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
SDDTN Architecture

Architecture Criteria

Here, the Routing Decisions aspect of the algorithm informs us of the de-
cisions behind the “Action Stage”. These are guarantees that are provided
by a working implementation of the algorithm.



Networks Verification Programming Languages and Usability

SDDTN Architecture

P4 Bundle Translator Algorithm (Step 1: Parser)

Algorithm 1 P4 Bundle Translator Algorithm
1: Step 1: Parser
2: Parse Ethernet header
3: Parse IPv4 header
4: Parse UDP header
5: Examine first byte after UDP header to determine if it is BPv6

or BPv7
6: Parse BPv6 or BPv7
7: Set a metadata flag indicating which BP version was ingested
8: Accept the bundle and transfer it to the match-action pipeline

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

P4 Bundle Translator Algorithm (Step 1: Parser)

Algorithm 1 P4 Bundle Translator Algorithm
1: Step 1: Parser
2: Parse Ethernet header
3: Parse IPv4 header
4: Parse UDP header
5: Examine first byte after UDP header to determine if it is BPv6

or BPv7
6: Parse BPv6 or BPv7
7: Set a metadata flag indicating which BP version was ingested
8: Accept the bundle and transfer it to the match-action pipeline20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
SDDTN Architecture

P4 Bundle Translator Algorithm (Step 1: Parser)

Step 1 Parser: Focuses on parsing the information from the Ethernet layer
and identifying the protocol version. The matching occurs at this stage,
by marking the bundle with metadata
Step 2 Match-Action Pipeline: This is the stage we will be focusing on for
the rest of this talk.
We start by checking the integrity and correctness of the bundle headers.
Then we record information about the bundle for monitoring and track-
ing. We create headers for the translated version (BPv6 to BPv7 or vice
versa) and transfer data. We mark the original BP headers as invalid after
translation. We then recalculate the UDP Length field accordingly. We
use IPv4 forwarding logic to decide the outgoing port.
Step 3 Deparser: This step transmits collected digest data to the control
plane for analysis and logging and forwards the processed bundles through
the designated egress port.
Now why do we specifically care about the Match-Action pipeline?



Networks Verification Programming Languages and Usability

SDDTN Architecture

P4 Bundle Translator Algorithm (Step 2: Match-Action
Pipeline)

1: Step 2: Match-Action Pipeline
2: Verify validity of bundle headers
3: Store digest data with information about/from the in-

gested bundle
4: Declare new headers for the translated version of the bun-

dle and move data from original BP headers
5: Invalidate the original BP headers and validate the trans-

lated BP headers
6: Update the IPv4 Total Length field
7: Update the UDP Length field
8: Apply IPv4 forwarding logic and determine egress portJan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

P4 Bundle Translator Algorithm (Step 2: Match-Action
Pipeline)

1: Step 2: Match-Action Pipeline
2: Verify validity of bundle headers
3: Store digest data with information about/from the in-

gested bundle
4: Declare new headers for the translated version of the bun-

dle and move data from original BP headers
5: Invalidate the original BP headers and validate the trans-

lated BP headers
6: Update the IPv4 Total Length field
7: Update the UDP Length field
8: Apply IPv4 forwarding logic and determine egress port

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
SDDTN Architecture

P4 Bundle Translator Algorithm (Step 2:
Match-Action Pipeline)

Step 1 Parser: Focuses on parsing the information from the Ethernet layer
and identifying the protocol version. The matching occurs at this stage,
by marking the bundle with metadata
Step 2 Match-Action Pipeline: This is the stage we will be focusing on for
the rest of this talk.
We start by checking the integrity and correctness of the bundle headers.
Then we record information about the bundle for monitoring and track-
ing. We create headers for the translated version (BPv6 to BPv7 or vice
versa) and transfer data. We mark the original BP headers as invalid after
translation. We then recalculate the UDP Length field accordingly. We
use IPv4 forwarding logic to decide the outgoing port.
Step 3 Deparser: This step transmits collected digest data to the control
plane for analysis and logging and forwards the processed bundles through
the designated egress port.
Now why do we specifically care about the Match-Action pipeline?



Networks Verification Programming Languages and Usability

SDDTN Architecture

P4 Bundle Translator Algorithm (Step 3: Deparser)

1: Step 3: Deparser
2: Pack and send digest data to the control plane
3: Recalculate and update IPv4 checksum
4: Recalculate and update UDP checksum
5: Emit bundle through egress port

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

P4 Bundle Translator Algorithm (Step 3: Deparser)

1: Step 3: Deparser
2: Pack and send digest data to the control plane
3: Recalculate and update IPv4 checksum
4: Recalculate and update UDP checksum
5: Emit bundle through egress port

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Networks
SDDTN Architecture

P4 Bundle Translator Algorithm (Step 3:
Deparser)

Step 1 Parser: Focuses on parsing the information from the Ethernet layer
and identifying the protocol version. The matching occurs at this stage,
by marking the bundle with metadata
Step 2 Match-Action Pipeline: This is the stage we will be focusing on for
the rest of this talk.
We start by checking the integrity and correctness of the bundle headers.
Then we record information about the bundle for monitoring and track-
ing. We create headers for the translated version (BPv6 to BPv7 or vice
versa) and transfer data. We mark the original BP headers as invalid after
translation. We then recalculate the UDP Length field accordingly. We
use IPv4 forwarding logic to decide the outgoing port.
Step 3 Deparser: This step transmits collected digest data to the control
plane for analysis and logging and forwards the processed bundles through
the designated egress port.
Now why do we specifically care about the Match-Action pipeline?



Networks Verification Programming Languages and Usability

Properties

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Properties



Networks Verification Programming Languages and Usability

Properties

Properties

Correctness
Properties
▶ Packet Delivery

Correctness
▶ Protocol

Translation
Accuracy

▶ Header
Integrity

▶ Checksum
Validation

Performance
Properties
▶ Latency

Bounds
▶ Throughput

Guarantees
▶ Resource

Utilization

Reliability
Properties
▶ Data

Redundancy
and Recovery

▶ Fault Tolerance
▶ Data

Persistence

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Properties

Correctness
Properties
▶ Packet Delivery

Correctness
▶ Protocol

Translation
Accuracy

▶ Header
Integrity

▶ Checksum
Validation

Performance
Properties
▶ Latency

Bounds
▶ Throughput

Guarantees
▶ Resource

Utilization

Reliability
Properties
▶ Data

Redundancy
and Recovery

▶ Fault Tolerance
▶ Data

Persistence

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Properties

Properties

By proving these properties, you can ensure that the SDDTN network is
reliable, secure, efficient, and scalable, while also meeting the necessary
regulatory and compliance standards. The verification process provides
confidence in the network’s ability to function correctly under a wide range
of conditions and use cases.



Networks Verification Programming Languages and Usability

Properties

Properties

Security
Properties
▶ Authentication

and
Authorization

▶ Data
Confidentiality

▶ Data Integrity

Scalability
Properties
▶ Network

Scalability
▶ Protocol

Scalability

Adaptability
Properties
▶ Dynamic Re-

configuration
▶ Policy

Compliance

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Properties

Security
Properties
▶ Authentication

and
Authorization

▶ Data
Confidentiality

▶ Data Integrity

Scalability
Properties
▶ Network

Scalability
▶ Protocol

Scalability

Adaptability
Properties
▶ Dynamic Re-

configuration
▶ Policy

Compliance

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Properties

Properties

By proving these properties, you can ensure that the SDDTN network is
reliable, secure, efficient, and scalable, while also meeting the necessary
regulatory and compliance standards. The verification process provides
confidence in the network’s ability to function correctly under a wide range
of conditions and use cases.



Networks Verification Programming Languages and Usability

Properties

Properties

Interoperability
Properties
▶ Cross-Protocol

Compatibility
▶ Backwards

Compatibility

Safety Properties
Compliance
Properties
Quality of Service
Properties
Temporal
Properties
Concurrency
Properties
Etc...

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Properties

Interoperability
Properties
▶ Cross-Protocol

Compatibility
▶ Backwards

Compatibility

Safety Properties
Compliance
Properties
Quality of Service
Properties
Temporal
Properties
Concurrency
Properties
Etc...20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Properties

Properties

By proving these properties, you can ensure that the SDDTN network is
reliable, secure, efficient, and scalable, while also meeting the necessary
regulatory and compliance standards. The verification process provides
confidence in the network’s ability to function correctly under a wide range
of conditions and use cases.



Networks Verification Programming Languages and Usability

Properties

Properties

Correctness
Properties
▶ Packet Delivery

Correctness
▶ Protocol

Translation
Accuracy

▶ Header
Integrity

▶ Checksum
Validation

Performance
Properties
▶ Latency

Bounds
▶ Throughput

Guarantees
▶ Resource

Utilization

Reliability
Properties
▶ Data

Redundancy
and Recovery

▶ Fault Tolerance
▶ Data

Persistence

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Properties

Correctness
Properties
▶ Packet Delivery

Correctness
▶ Protocol

Translation
Accuracy

▶ Header
Integrity

▶ Checksum
Validation

Performance
Properties
▶ Latency

Bounds
▶ Throughput

Guarantees
▶ Resource

Utilization

Reliability
Properties
▶ Data

Redundancy
and Recovery

▶ Fault Tolerance
▶ Data

Persistence

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Properties

Properties

These are the properties we currently care about in respect to the Match-
Action Pipeline. As you can see, it’s nontrivial to choose the algorithm to
prove these a lot of these properties safe in the SDDTN!



Networks Verification Programming Languages and Usability

Properties

Properties

Security
Properties
▶ Authentication

and
Authorization

▶ Data
Confidentiality

▶ Data Integrity

Adaptability
Properties
▶ Dynamic Re-

configuration
▶ Policy

Compliance

Quality of Service
Properties
Temporal
Properties

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Properties

Security
Properties
▶ Authentication

and
Authorization

▶ Data
Confidentiality

▶ Data Integrity

Adaptability
Properties
▶ Dynamic Re-

configuration
▶ Policy

Compliance

Quality of Service
Properties
Temporal
Properties

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Properties

Properties

These are the properties we currently care about in respect to the Match-
Action Pipeline. As you can see, it’s nontrivial to choose the algorithm to
prove these a lot of these properties safe in the SDDTN!



Networks Verification Programming Languages and Usability

Properties

Properties

Correctness
Properties
▶ Packet Delivery

Correctness
▶ Protocol

Translation
Accuracy

▶ Header
Integrity

▶ Checksum
Validation

Performance
Properties
▶ Latency

Bounds
▶ Throughput

Guarantees
▶ Resource

Utilization

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Properties

Correctness
Properties
▶ Packet Delivery

Correctness
▶ Protocol

Translation
Accuracy

▶ Header
Integrity

▶ Checksum
Validation

Performance
Properties
▶ Latency

Bounds
▶ Throughput

Guarantees
▶ Resource

Utilization

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Properties

Properties

I’ll go into detail for the properties that I was able to prove correct. The
rest are of course a work in progress and ideally I’ve provided a framework
to allow anyone to work on the more complicated problems. . .
1. Packet Delivery Correctness The Match-Action Pipeline determines
the appropriate actions for each packet, such as forwarding, dropping, or
modifying. This pipeline ensures that the packets are handled correctly
according to the rules.
2. Protocol Translation Accuracy: The pipeline is responsible for trans-
lating between different protocol versions. It ensures that headers and
pauloads are correctly translated without data loss or corruption.
3. Header Integrity: It involves checking and potentially modifying packet
headers. The pipeline must maintain the integrity of these headers during
processing.
4. Checksum Validation: As the packets are processed, the pipeline may
need to verify or update checksums, such as the IPv4 and UDP checksums,
to ensure data integrity during transit.



Networks Verification Programming Languages and Usability

Properties

What does it mean to formally guarantee these?

“What the Curry-Howard correspondence says is that a proof is a
program, and the formula it proves is the type for the program.”

“We go back to Mathematics: Min-Plus Algebra to be exact.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

What does it mean to formally guarantee these?

“What the Curry-Howard correspondence says is that a proof is a
program, and the formula it proves is the type for the program.”

“We go back to Mathematics: Min-Plus Algebra to be exact.”

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Properties

What does it mean to formally guarantee these?

This statement is very loaded and I will not be going into the exact details
of it. But essentially, we have a framework in which we can encode this
computational behavior mathematically. If this is the case, we are able
to provide robust guarantees for the mathematical framework via formal
proofs. This would lead us to also guarantee these same principles for the
computational model we based our mathematical model on.
The mathematical representation for our Match-Action Pipeline is what
we will call our Network Calculus. Ideally, a Network Calculus has more
substance than modeling a single algorithm, but for the sake of simplicity,
we can imagine that this model is a 1 to 1 abstraction from the algorithm
we just saw.



Networks Verification Programming Languages and Usability

Algebra

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra



Networks Verification Programming Languages and Usability

Algebra

Our Algebraic Foundations

(Definition) Dioid. We represent a dioid as an algebraic structure
of the form:

(D,⊕,⊗, 0, 1) (1)

(Definition) Kleene Star. We represent a Kleene Star a defined
for a dioid D as:

a =
∞⊗
n=0

an (2)

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Our Algebraic Foundations

(Definition) Dioid. We represent a dioid as an algebraic structure
of the form:

(D,⊕,⊗, 0, 1) (1)

(Definition) Kleene Star. We represent a Kleene Star a defined
for a dioid D as:

a =
∞⊗
n=0

an (2)

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Our Algebraic Foundations

It is a well-known approach to use Tropical algebra (also referred to as the
algebra of a min-plus dioid) to model a Network Calculus for analyzing
performance bounds like delays and backlogs.
In here, a dioid’s oplus is associative, commutative, and idempotent. The
otimes is associative, distributes over oplus, and has an absorbing element
0. 1 is the neutral element for otimes.
For Kleene Star, we have that a0 = 1 and an+1 = a⊗ an.



Networks Verification Programming Languages and Usability

Algebra

Network Calculus Model

(Definition) Cumulative Function. A cumulative function
f : R+ → R+ is defined as:
▶ Non-decreasing: ∀t, d ∈ R+, f (t) ≤ f (t + d)

▶ Starts at 0: f (0) = 0
▶ Left continuous.

Let C denote the set of all such cumulative functions.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Network Calculus Model

(Definition) Cumulative Function. A cumulative function
f : R+ → R+ is defined as:
▶ Non-decreasing: ∀t, d ∈ R+, f (t) ≤ f (t + d)

▶ Starts at 0: f (0) = 0
▶ Left continuous.

Let C denote the set of all such cumulative functions.

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Network Calculus Model

The cumulative function represents the total amount of data that has
arrived or departed at a network node over time, providing a way to model
data flow in terms of volume and time.



Networks Verification Programming Languages and Usability

Algebra

Network Calculus Model

(Definition) Server. A relation S ⊆ C × C , associating an arrival
function A with a departure function D. It satisfies:
▶ ∀A ∈ C , ∃D ∈ C , (A,D) ∈ S

▶ (A,D) ∈ S =⇒ D ≤ A

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Network Calculus Model

(Definition) Server. A relation S ⊆ C × C , associating an arrival
function A with a departure function D. It satisfies:
▶ ∀A ∈ C ,∃D ∈ C , (A,D) ∈ S

▶ (A,D) ∈ S =⇒ D ≤ A

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Network Calculus Model

Servers are abstract models that describe how data is processed and for-
warded from arrival to departure, effectively representing network elements
like switches or routers.



Networks Verification Programming Languages and Usability

Algebra

Network Calculus Model

(Definition) Arrival Curve. An arrival curvbe α for a cumulative
function A satisfies:

A(t) ≤ (A ∗ α)(t)∀t (3)

where * denotes the min-plus convolution defined by

(f ∗ g)(t) = inf
0≤s≤t

{f (t − s) + g(s)} (4)

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Network Calculus Model

(Definition) Arrival Curve. An arrival curvbe α for a cumulative
function A satisfies:

A(t) ≤ (A ∗ α)(t)∀t (3)

where * denotes the min-plus convolution defined by

(f ∗ g)(t) = inf
0≤s≤t

{f (t − s) + g(s)} (4)

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Network Calculus Model

Arrival curves provide an upper-bound on the data flow into a system,
describing the maximum amount of data that can arrive within any given
time interval.
The min-plus convolution tells that for two functions, their combination
determines the worst-case accumulation of delays and data processing in
the network. It is doing this by taking the minimum sum of their values
shifted over time.



Networks Verification Programming Languages and Usability

Algebra

Network Calculus Model

(Definition) Minimal Service Curve. A server S offers minimal
service β if:

(A,D) ∈ S =⇒ D(t) ≥ (A ∗ β)(t)∀t (5)

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Network Calculus Model

(Definition) Minimal Service Curve. A server S offers minimal
service β if:

(A,D) ∈ S =⇒ D(t) ≥ (A ∗ β)(t)∀t (5)

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Network Calculus Model

A minimal service curve defines the guaranteed amount of service (i.e.,
data processing capacity) that a server offers, ensuring a lower bound on
the output rate and thus helping to predict delays and backlogs.



Networks Verification Programming Languages and Usability

Algebra

Network Calculus Model

Network Calculus Definitions → Properties for Verification →
Formal Theorems and Proofs

What can we prove?
▶ Packet Delivering Correctness.
▶ Protocol Translation Accuracy.
▶ Header Integrity and Checksum. Validation: For an

idempotent transformation T applied to packet headers,
T (T (H)) = T (H) for header H.

▶ Latency Bounds: Delay d(A,D) bounded on arrival and
service curves.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Network Calculus Model

Network Calculus Definitions → Properties for Verification →
Formal Theorems and Proofs

What can we prove?
▶ Packet Delivering Correctness.
▶ Protocol Translation Accuracy.
▶ Header Integrity and Checksum. Validation: For an

idempotent transformation T applied to packet headers,
T (T (H)) = T (H) for header H.

▶ Latency Bounds: Delay d(A,D) bounded on arrival and
service curves.20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Network Calculus Model

Using these definitions, we can formalize and verify several properties re-
lated to the Match-Action pipeline.
Packet Delivering: The Match-Action pipeline must ensure that packets
are forwarded to the correct destination. This can be modeled by showing
that the server S processing the packets guarantees that for any arrival
curve α, the departure curve D satisfies the required bounds.
Protocol Translation: Verify that the transformation from BPv6 to BPv7
(or vice versa) adheres to a well-defined bijection, preserving the semantics
of the protocols and ensuring no loss of information.
Header Integrity: This involves verifying that the changes made to the
packer headers and the recalculated checksums match expected values,
ensuring data integrity. This can be modeled as an idempotent transfor-
mation T applied to packet headers, where T (T (H) = T (H) for header
H.
Latency Bounds: Define and prove bounds on the time taken for a packet
to traverse the Match-Action pipeline. The delay d(A,D) can be bounded
using the arrival curve and service curves.



Networks Verification Programming Languages and Usability

Algebra

Theorem: Protocol Translation Correctness

Statement:
If a bundle is correctly parsed and translated from BPv6 to BPv7
(or vice versa) in the Match-Action pipeline, then the output
bundle’s headers and payload accurately reflect the input bundle’s
content, ensuring no loss or corruption of data.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Theorem: Protocol Translation Correctness

Statement:
If a bundle is correctly parsed and translated from BPv6 to BPv7
(or vice versa) in the Match-Action pipeline, then the output
bundle’s headers and payload accurately reflect the input bundle’s
content, ensuring no loss or corruption of data.

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Theorem: Protocol Translation Correctness



Networks Verification Programming Languages and Usability

Algebra

Example Proof: Protocol Translation Correctness

Proof.
Let Bin be the input bundle with BPv6 headers and payload Pin. The pipeline
first applies the parsing function parse to extract the headers and payload,
yielding parse(Bin) = (Hv6,Pin).
Next, the translation function T is defined to map each BPv6 header field to a
corresponding BPv7 field, i.e., T : Hv6 → Hv7. The translation ensures that all
relevant information is preserved in the new format.
The reconstructed bundle Bout = (Hv7,Pin) is then formed using the translated
headers and the original payload. Verification confirms that every component in
Hv6 is accurately represented in Hv7, and the payload Pin remains intact.
Thus, the output bundle Bout accurately reflects the input Bin in the new
protocol format, ensuring no data loss or corruption, completing the proof.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Example Proof: Protocol Translation Correctness

Proof.
Let Bin be the input bundle with BPv6 headers and payload Pin. The pipeline
first applies the parsing function parse to extract the headers and payload,
yielding parse(Bin) = (Hv6,Pin).
Next, the translation function T is defined to map each BPv6 header field to a
corresponding BPv7 field, i.e., T : Hv6 → Hv7. The translation ensures that all
relevant information is preserved in the new format.
The reconstructed bundle Bout = (Hv7,Pin) is then formed using the translated
headers and the original payload. Verification confirms that every component in
Hv6 is accurately represented in Hv7, and the payload Pin remains intact.
Thus, the output bundle Bout accurately reflects the input Bin in the new
protocol format, ensuring no data loss or corruption, completing the proof.20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Example Proof: Protocol Translation Correctness

This proof shows that translating protocol headers from BPv6 to BPv7 (or
vice versa) correctly preserves the original data’s integrity.



Networks Verification Programming Languages and Usability

Algebra

Theorem: Header Integrity

Statement:
The Match-Action pipeline ensures that the headers of a bundle are
correctly preserved or updated according to specified rules,
maintaining data integrity.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Theorem: Header Integrity

Statement:
The Match-Action pipeline ensures that the headers of a bundle are
correctly preserved or updated according to specified rules,
maintaining data integrity.

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Theorem: Header Integrity



Networks Verification Programming Languages and Usability

Algebra

Example Proof: Header Integrity

Proof.
Let Hin denote the initial headers of the input bundle. The pipeline first applies
the verification function verify(Hin) to check for validity, ensuring that all
headers meet the required standards.
If modifications are necessary, the modification function modify is applied,
following predefined rules R that govern allowable changes. The resulting
headers Hmod are then revalidated using validate(Hmod) to confirm compliance
with protocol standards.
This process ensures that all changes are authorized and correctly implemented.
The final headers Hout , whether preserved or modified, are guaranteed to
adhere to the protocol specifications, ensuring the integrity of the data bundle.
Thus, the pipeline effectively maintains header integrity, preventing
unauthorized modifications and preserving data correctness, completing the
proof.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Example Proof: Header Integrity

Proof.
Let Hin denote the initial headers of the input bundle. The pipeline first applies
the verification function verify(Hin) to check for validity, ensuring that all
headers meet the required standards.
If modifications are necessary, the modification function modify is applied,
following predefined rules R that govern allowable changes. The resulting
headers Hmod are then revalidated using validate(Hmod) to confirm compliance
with protocol standards.
This process ensures that all changes are authorized and correctly implemented.
The final headers Hout , whether preserved or modified, are guaranteed to
adhere to the protocol specifications, ensuring the integrity of the data bundle.
Thus, the pipeline effectively maintains header integrity, preventing
unauthorized modifications and preserving data correctness, completing the
proof.20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Algebra

Example Proof: Header Integrity

This proof establishes that headers in a data bundle are handled correctly,
ensuring that no unauthorized changes occur, thus maintaining integrity.



Networks Verification Programming Languages and Usability

Automated Theorem Proving

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Automated Theorem Proving



Networks Verification Programming Languages and Usability

Automated Theorem Proving

Coq: Automated Theorem Prover

“Coq is an Automated Theorem Prover.” We get:
▶ Formal Specifications.
▶ Proof Verification.
▶ Executable Extraction.
▶ Automation.

But, in my opinion, the strongest property we get by using Coq:
▶ We can computationally model the Network Calculus.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Coq: Automated Theorem Prover

“Coq is an Automated Theorem Prover.” We get:
▶ Formal Specifications.
▶ Proof Verification.
▶ Executable Extraction.
▶ Automation.

But, in my opinion, the strongest property we get by using Coq:
▶ We can computationally model the Network Calculus.

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Verification
Automated Theorem Proving

Coq: Automated Theorem Prover

Coq provides us with a formal language to write mathematical definitions,
executable algorithms, and theorems, together with an environment for
semi-interactive development of machine-checked proofs.
Here, we can clearly see that by using Coq, we’re able to define the pre-
cise properties that the network should uphold. Of course we have the
guarantee of our proofs being correct because of the mechanization, but
more importantly, we can use Coq as a way to computationally model the
Network Calculus, the mathematical representation of our Match-Action
Pipeline.
This leads us to the latter part of my project, usability!



Networks Verification Programming Languages and Usability

Why?

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
Why?



Networks Verification Programming Languages and Usability

Why?

The Power of Programming Languages

“We cannot guarantee anything in regards to the implementation,
even if the algorithm is correct.”

“Programming Languages can fix this!”

“Coq is not just our tool of mechanization, it is also our
implementation.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

The Power of Programming Languages

“We cannot guarantee anything in regards to the implementation,
even if the algorithm is correct.”

“Programming Languages can fix this!”

“Coq is not just our tool of mechanization, it is also our
implementation.”

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
Why?

The Power of Programming Languages

As we have seen thus far, Formal Verification is very useful for providing
guarantees when analyzing our algorithms. However, everything we have
discussed thus far does not talk about the actual implementation provided
in the Glenn paper we have been referencing. More specifically, their
Match-Action Pipeline algorithm is not targeted at all by our verification
methods. While we can make use of our model to provide guarantees to an
abstraction of such, we cannot provide guarantees to the implementation
of the algorithm. In fact, we currently can’t guarantee any implementation
correct!
Using Programming Languages, we can further encode our representation
of the Network Calculus in Coq, which is a programming language, to
essentially "verify" an implementation of the algorithm.



Networks Verification Programming Languages and Usability

NetQIR

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
NetQIR



Networks Verification Programming Languages and Usability

NetQIR

NetQIR: A solution to a problem
“While we would love to use Coq as our implementation tool... it’s
just not feasible.”

“If we can just choose a small subset of the greater Network
Calculus, such as our Match-Action Pipeline, we would be able to
get nice results with just Coq.”

“But mechanization is HARD. And engineers do not want to be
looking at thousands of lines of formal proofs to write a relatively
short program.”

“NetQIR: An Intermediate Representation for indirectly mechanizing
implementations of the Match-Action Pipeline.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

NetQIR: A solution to a problem
“While we would love to use Coq as our implementation tool... it’s
just not feasible.”

“If we can just choose a small subset of the greater Network
Calculus, such as our Match-Action Pipeline, we would be able to
get nice results with just Coq.”

“But mechanization is HARD. And engineers do not want to be
looking at thousands of lines of formal proofs to write a relatively
short program.”

“NetQIR: An Intermediate Representation for indirectly mechanizing
implementations of the Match-Action Pipeline.”

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
NetQIR

NetQIR: A solution to a problem

However, we don’t want to actually be using Coq as our implementation
tool, mostly because Coq is not Turing-Complete, meaning we cannot
arbitrarily encode any program in it. Moreso, it would be incredibly difficult
to make a working framework of libraries to support all programs we would
like to work with in the Network Calculus. Because of this, we choose to
only target the Match-Action pipeline!
Coq is mainly seen in this context as a spec to abide by the engineers
who will actually implement the code. But we propose instead a way to
indirectly mechanize the code engineers will write (not in Coq).



Networks Verification Programming Languages and Usability

NetQIR

NetQIR Pipeline Overview

▶ Type System design in Coq that checks for NetQIR programs
▶ Parser from P4 to NetQIR and Operational Semantics analyzer

in OCaml.
▶ Serialization from the OCaml generated AST to serve as an

input for the Coq type checker.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

NetQIR Pipeline Overview

▶ Type System design in Coq that checks for NetQIR programs
▶ Parser from P4 to NetQIR and Operational Semantics analyzer

in OCaml.
▶ Serialization from the OCaml generated AST to serve as an

input for the Coq type checker.

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
NetQIR

NetQIR Pipeline Overview



Networks Verification Programming Languages and Usability

NetQIR

NetQIR Type System

Γ ⊢ IRHeader(n, s) : THeader
(T-Header) (6)

Γ ⊢ ei : THeader ∀i ∈ [1, n]
Γ ⊢ IRAction(a, [e1, . . . , en]) : TAction

(T-Action) (7)

Γ ⊢ emi : THeader Γ ⊢ eai : TAction ∀i ∈ [1, n]
Γ ⊢ IRTable(t, [(em1, ea1), . . . , (emn, ean)]) : TTable

(T-Table) (8)

Γ ⊢ ei : τi ∀i ∈ [1, n]
Γ ⊢ IRProgram([e1, . . . , en])

(T-Program) (9)

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

NetQIR Type System

Γ ⊢ IRHeader(n, s) : THeader
(T-Header) (6)

Γ ⊢ ei : THeader ∀i ∈ [1, n]
Γ ⊢ IRAction(a, [e1, . . . , en]) : TAction

(T-Action) (7)

Γ ⊢ emi : THeader Γ ⊢ eai : TAction ∀i ∈ [1, n]
Γ ⊢ IRTable(t, [(em1, ea1), . . . , (emn, ean)]) : TTable

(T-Table) (8)

Γ ⊢ ei : τi ∀i ∈ [1, n]
Γ ⊢ IRProgram([e1, . . . , en])

(T-Program) (9)20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
NetQIR

NetQIR Type System

The type system defines the rules that specify how expressions and compo-
nents of the intermediate representation (IR) are classified. It ensures that
the components of a network program are used consistently and correctly.
For instance, it guarantees that headers are treated as headers, actions as
actions, and so on.



Networks Verification Programming Languages and Usability

NetQIR

NetQIR Grammar

Expr ::= IRHeader(n, s)
| IRField(h, f , v)
| IRAction(a, [e1, . . . , en])
| IRTable(t, [(m1, a1), . . . , (mn, an)])

| IRMatch(f , v)
| IRApply(t)

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

NetQIR Grammar

Expr ::= IRHeader(n, s)
| IRField(h, f , v)
| IRAction(a, [e1, . . . , en])
| IRTable(t, [(m1, a1), . . . , (mn, an)])

| IRMatch(f , v)
| IRApply(t)

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
NetQIR

NetQIR Grammar

The grammar defines the syntactical structure of the IR expressions. It
specifies how different elements like headers, fields, actions, and tables can
be composed to form valid programs. The grammar includes definitions
for headers, match conditions, actions, and table applications.



Networks Verification Programming Languages and Usability

NetQIR

NetQIR Network Semantics

⟨IRHeader(n, s), σ⟩ → σ
(E-Header) (10)

⟨ei , σi ⟩ → σi+1 ∀i ∈ [1, n]
⟨IRAction(a, [e1, . . . , en]), σ⟩ → σn+1

(E-Action) (11)

⟨emi , σ⟩ → σ2i−1 ⟨eai , σ2i−1⟩ → σ2i

⟨IRTable(t, [(em1, ea1), . . . , (emn, ean)]), σ⟩ → σ2n
(E-Table) (12)

⟨ei , σi ⟩ → σi+1 ∀i ∈ [1, n]
⟨IRProgram([e1, . . . , en]), σ⟩ → σn

(E-Program) (13)

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks Verification Programming Languages and Usability

Type Preserving Compilation

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks



Networks Verification Programming Languages and Usability

Type Preserving Compilation

NetQIR Network Semantics

⟨IRHeader(n, s), σ⟩ → σ
(E-Header) (10)

⟨ei , σi ⟩ → σi+1 ∀i ∈ [1, n]
⟨IRAction(a, [e1, . . . , en]), σ⟩ → σn+1

(E-Action) (11)

⟨emi , σ⟩ → σ2i−1 ⟨eai , σ2i−1⟩ → σ2i

⟨IRTable(t, [(em1, ea1), . . . , (emn, ean)]), σ⟩ → σ2n
(E-Table) (12)

⟨ei , σi ⟩ → σi+1 ∀i ∈ [1, n]
⟨IRProgram([e1, . . . , en]), σ⟩ → σn

(E-Program) (13)20
24

-1
0-

24
Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
NetQIR

NetQIR Network Semantics

The network semantics describe how the execution of IR expressions affects
the network state. It defines the transition rules that specify how headers,
actions, and tables are evaluated, and how they modify the state repre-
sented by the symbol σ.Thesemanticsensurethateachoperationhasawell −
definedeffectonthenetwork ′sdata.

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks
DTN & SDDTN
SDDTN Architecture

Verification
Properties
Algebra
Automated Theorem Proving

Programming Languages and Usability
Why?
NetQIR
Type Preserving Compilation20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
Type Preserving Compilation



Networks Verification Programming Languages and Usability

Type Preserving Compilation

Type Preservation

“If we preserve the type information from a source language, we can
abuse that typing information to provide further guarantees about
that source language’s behavior.”

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Type Preservation

“If we preserve the type information from a source language, we can
abuse that typing information to provide further guarantees about
that source language’s behavior.”

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
Type Preserving Compilation

Type Preservation

Type preserving compilation is a compilation process where the source pro-
gram’s type information is maintained throughout the compilation process,
ensuring that the compiled program adheres to the same type constraints
as the original program. This process involves translating a well-typed
source program into a target program that is also well-typed, according to
the type system of the target language.
Type preserving compilation is crucial for ensuring that the semantic prop-
erties guaranteed by the type system of the source language are preserved
in the compiled code. This means that if the source program is type-safe,
the compiled program will also be type-safe, preventing certain classes of
runtime errors.



Networks Verification Programming Languages and Usability

Type Preserving Compilation

Type Soundness in Coq and Match-Action Pipeline

Theorem (Type Soundness in Coq)
If a program P is well-typed in Coq, then it guarantees correct
behavior in the Match-Action Pipeline.

Proof.
Let P be a program with type τ in Coq’s type system TCoq, i.e., Γ ⊢ P : τ . The
Match-Action Pipeline has been verified in Coq to adhere to defined semantics
and properties.
Since P is well-typed, it adheres to the type constraints, preventing operations
that could cause runtime errors. The correctness of the pipeline’s operations
ensures that data manipulations follow the expected behavior.
Thus, the execution of P within the pipeline is sound, adhering to the semantic
rules and maintaining data integrity, completing the proof.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Type Soundness in Coq and Match-Action Pipeline

Theorem (Type Soundness in Coq)
If a program P is well-typed in Coq, then it guarantees correct
behavior in the Match-Action Pipeline.

Proof.
Let P be a program with type τ in Coq’s type system TCoq, i.e., Γ ⊢ P : τ . The
Match-Action Pipeline has been verified in Coq to adhere to defined semantics
and properties.
Since P is well-typed, it adheres to the type constraints, preventing operations
that could cause runtime errors. The correctness of the pipeline’s operations
ensures that data manipulations follow the expected behavior.
Thus, the execution of P within the pipeline is sound, adhering to the semantic
rules and maintaining data integrity, completing the proof.20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
Type Preserving Compilation

Type Soundness in Coq and Match-Action
Pipeline

Context: A program P in Coq’s type system TCoq iswell−typedif Γ ⊢ P : τ .
Goal: Show that well-typed programs ensure correct behavior in the Match-
Action Pipeline. Proof Outline: Coq enforces strict type safety, preventing
runtime type errors. The Match-Action Pipeline’s operations are verified
within Coq to adhere to defined semantics. Thus, if P is well-typed, it will
operate correctly within the pipeline, ensuring sound execution.



Networks Verification Programming Languages and Usability

Type Preserving Compilation

Well-behaved Proof

Theorem (Type Preserving Compilation)
If a P4 program PP4 is well-typed and the compilation to NetQIR is
type-preserving, then the NetQIR program PNetQIR is well-typed
and sound.

Proof.
Let ΓP4 ⊢ PP4 : τP4 denote that PP4 is well-typed in P4. The type-preserving
compilation maps types τP4 to τNetQIR in NetQIR.
Given ΓP4 ⊢ PP4 : τP4, the transpiled program PNetQIR satisfies
ΓNetQIR ⊢ PNetQIR : τNetQIR . The NetQIR type system ensures that all operations
conform to expected types and behaviors.
Thus, PNetQIR being well-typed implies it adheres to the verified semantics,
ensuring sound execution and the preservation of properties from P4 to
NetQIR, completing the proof.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

Networks Verification Programming Languages and Usability

Type Preserving Compilation

Well-behaved Proof

Theorem (Type Preserving Compilation)
If a P4 program PP4 is well-typed and the compilation to NetQIR is
type-preserving, then the NetQIR program PNetQIR is well-typed
and sound.

Proof.
Let ΓP4 ⊢ PP4 : τP4 denote that PP4 is well-typed in P4. The type-preserving
compilation maps types τP4 to τNetQIR in NetQIR.
Given ΓP4 ⊢ PP4 : τP4, the transpiled program PNetQIR satisfies
ΓNetQIR ⊢ PNetQIR : τNetQIR . The NetQIR type system ensures that all operations
conform to expected types and behaviors.
Thus, PNetQIR being well-typed implies it adheres to the verified semantics,
ensuring sound execution and the preservation of properties from P4 to
NetQIR, completing the proof.

20
24

-1
0-

24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
Type Preserving Compilation

Well-behaved Proof

- Context: A P4 program PP4iswell − typedinP4′stypesystem, ΓP4 ⊢
PP4 : τP4. - Goal: Prove that type preservation in compilation
ensures soundness in NetQIR. - Proof Outline: - Type-preserving com-
pilation translates PP4intoPNetQIRwhilemaintainingtypeinformation. −
TheNetQIRtypesystemTNetQIRenforcessimilarorstricterrules, ensuringcorrectbehavior .−
Therefore, ifPP4iswell − typed ,PNetQIRwillalsobewell −
typedandadheretocorrectsemantics, guaranteeingsoundexecution.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks



Networks Verification Programming Languages and Usability

Type Preserving Compilation

End.

→ <shapr> I’m addicted to arrows.

→ * shapr begins his own paper “Generalizing Arrows to Spears”.

→ <shapr> Spears can do anything efficiently, but they have sixty
thousand laws they must satisfy, and we haven’t actually found one
yet.

→ <raphael> maybe "Generalizing Arrows to Nuclear Weapons"
would simply be: unsafeInterleaveIO.

Jan-Paul Ramos-Dávila

Formally Verified Software Defined Delay-Tolerant Networks

End.

→ <shapr> I’m addicted to arrows.

→ * shapr begins his own paper “Generalizing Arrows to Spears”.

→ <shapr> Spears can do anything efficiently, but they have sixty
thousand laws they must satisfy, and we haven’t actually found one
yet.

→ <raphael> maybe "Generalizing Arrows to Nuclear Weapons"
would simply be: unsafeInterleaveIO.20

24
-1

0-
24

Formally Verified Software Defined Delay-Tolerant
Networks

Programming Languages and Usability
Type Preserving Compilation

End.


	Networks
	DTN & SDDTN
	SDDTN Architecture

	Verification
	Properties
	Algebra
	Automated Theorem Proving

	Programming Languages and Usability
	Why?
	NetQIR
	Type Preserving Compilation


