
IEEE 2017
Conference on

Computer
Vision and

Pattern
Recognition

//Gradual C0 Example
void withdraw(Account* account)
//@requires acc(account->balance) &&
account->balance >= 5
//@ensures acc(account->balance) &&
account->balance >= 0
{
account->balance -= 5;

}

// ? allows the verifier to assume anything
necessary to satisfy the withdraw precon
void withdraw(Account* account)
//@requires ? && acc(account->balance);
//@ensures ? && acc(account->balance) &&
account->balance >= 0
{
if(account->balance <= 100)
withdraw(account);

}

Evaluating Soundness of a Gradual Verifier
with Property Based Testing

Jan-Paul Ramos-Dávila
Cornell University

Dynamic verification approaches cannot
provide static guarantees.

Gradual verification bridges this gap,
supporting incrementality by allowing the
user to specify a given program as much as
they want, with a formal guarantee of
verifiability.

The gradual guarantee states that
verifiability and reducibility are monotone
with respect to precision.

Static verification techniques do not provide
good support for incrementality.

There are no techniques available to
ensure the implementation of Gradual C0 is
correct!

Gradual C0’s design has been proven sound
and will catch all violations of a
specification.

- if (x < v) {
+ if (v < x) {
 if (l != NULL) {
 root->left = tree_add_helper(l, x, min, v-1);
 } else {
 root->left = create_tree_helper(x, min, v-1);
 }
 } else {
- if (v < x) {
+ if (x < v) {
 if (r != NULL) {
 root->right = tree_add_helper(r, x, v+1, max);
 } else {
 root->right = create_tree_helper(x, v+1, max);
 }
 }
 }

To prevent a trivial failure in a Gradual C0
program, we must avoid specifying
preconditions and fold/unfolds that
won’t be met while running.

1. Reference model language
uses Gradual C0’s specifications

3.1 Checker: Dynamic C0
Gradual C0 program that
asserts runtime checks
everywhere: The ground truth

2. Input Generator is a test suite
of examples that are not
supposed to verify correctly.
Ideally we randomly permute to
test on.

A number of bugs were caught and fixed
by hand, which Gradual C0’s design was
implemented incorrectly.

Capturing the truthiness of a property’s
result provides good coverage for finding
these implementations bugs.

In Gradual C0, the truthiness for all
programs consists of a pair of outputs:
dynamic and gradual verification output
message given by Dynamic C0 and Gradual
C0 respectively.

Failed equivalence between the pair of
outputs informs us of bugs in Gradual C0’s
implementation that do not break the
gradual guarantee and would not have
been caught otherwise.

3.2 Checker: Gradual C0
Gradual C0 is compared with
Dynamic C0, expecting an error
or a pass.

Input
C0 program p

Intermediate Representation
for Gradual p

Output
if S1 != S2 and
S1 == success

then : error
else : success

Compile & Exec
Gradual p

Gradually
Verify

Gradual p

success
String S1 OR

error
String S1

Wait for S2
output

IR for
Dynamic p

Wait for S1
output

Dynamically
Verify

Dynamic p

success
String S2 OR

error
String S2

1

2

3 4 5 10

6 7 8 9

11

One of the main Gradual C0 programs in
our test suite is a Binary Search Tree.

We want to break the tree order, the left
subtree has to be less than the right
subtree. Therefore, we insert a node
which is greater in the left hand side of
the tree.

We caught 4 soundness
bugs at different
implementation phases of
Gradual C0.

/*@
predicate list(struct Node *l) =
 ? && (l != NULL ? acc(l->value) &&
list(l->next) : true);
@*/
void append(Node *root, int value)
 //@requires ?;
 //@ensures ? && list(root);
 {
 Node *n = root;
 while (n->next != NULL)
 //@loop_invariant ?;
 n = n->next;
 n->next = alloc(Node);
 n->next->value = value;
}

Here’s a soundness issue
that was identified with our
tool.

By Example

Why Property Based Testing?What is Gradual Verification?

Soundness Evaluation Checker Architecture

Three-stage pipeline Test suite

