
IEEE 2017
Conference on

Computer
Vision and

Pattern
Recognition

Optimization of a Gradual Verifier: Lazy evaluation of
Iso-recursive Predicates as Equi-recursive at Runtime

Jan-Paul Ramos-Dávila

Cornell University

Static verification techniques do not
provide good support for incrementality.

Background

Dynamic verification approaches cannot
provide static guarantees.

Gradual verification bridges this gap,
supporting incrementality by allowing
the user to specify a given program as

much as they want, with a formal
guarantee of verifiability. The gradual
guarantee states that verifiability and

reducibility are monotone with respect to
precision.

Gradual C0 Iso vs Equi

1 struct Node { int val ; struct Node * next ; };
2 typedef struct Node Node ;
3
4 //@ predicate acyclic(Node* root) = ?;
5
6 Node * insertLast (Node * list , int val)
7 //@ requires ?;
8 //@ ensures acyclic(\result);
9 {
10 //@ unfold acyclic(list);
11 Node * y = list ;
12 while (y -> next != NULL)
13 //@ loop_invariant ? && y != NULL;
14 { y = y -> next ; }
15 y -> next = alloc (struct Node);
16 y -> next -> val = val ;
17 y -> next -> next = NULL ;
18 //@ fold acyclic(list);
19 return list ;
20 }

Iso-recursive predicates are isomorphic
to their unfolding, and the isomorphism
corresponds to folds/unfolds (highlight
to the left.) We never have the problem

of not knowing how deep to unroll!

Equi-recursive predicates are equal to
their unfolding, therefore treating them

as their complete unfolding.

Gradual C0 uses iso-recursion for static
checking and equi-recursion for dynamic

checking.

Optimizing Runtime Assertions

Slice Construction
Predicates are gathered and
unfolded to 1-depth if they
exhibit recursive behavior.

Pipeline

Runtime Assertions
As detailed in the code to

the left, insert the unfolded
predicates into the verified

code body.

Equivalence
Identification

Keeps track of the path
condition; identify which
conditions overlap and
discard. Z3 SMT solver

identifies a more
sophisticated identification.

At the introduction of imprecise
specifications with static

information we get naive runtime
checks which re-assert the same

logic from a predicate.

A common pattern for writing
gradual specifications seems to be

to specify the post-condition but
keep an imprecise pre-condition (as

in the code above).

While the verifier asserts
iso-recursive predicates, there is a
a side effect of equivalent checks

for the predicate logic!

Unbounded Recursion
Future work would

implement an equivalent
loop transformation

algorithm for identifying the
minimum required unfolds.

1 assert(_1 - node->leftHeight < 2);
2 assert(node->leftHeight >= 0);
3 avlh(node->right, _1, _ownedFields);
4 avlh(_, node->leftHeight, _ownedFields);

1 assert(_1 - node->leftHeight < 2);
2 assert(node->leftHeight >= 0);
3 if (_ == node->right && _1 == node->leftHeight) {
4 avlh(node->right->left, node->right->leftHeight)
5 avlh(node->right->node->right,
6 node->right->node->rightHeight)
7 assert(node->leftHeight - node->rightHeight < 2)
8 assert(node->rightHeight - node->leftHeight < 2)
9 assert(node->leftHeight >= 0)
10 assert(node->rightHeight >= 0)
11 assert(root->leftHeight > root->rightHeight ?
12 height1 == root->leftHeight+1 :
13 height1 == root->rightHeight+1))
14 } else {
15 avlh(node->right, _1, _ownedFields);
16 avlh(_, node->leftHeight, _ownedFields);
17 }

Before Opt.

After Opt.

The red tree shows the
program logic during the first
iteration of the recursive call,
whereas the green tree is the

second iteration.

Runtime checks should only
verify the side of the tree which

changes, not the entire tree.

