
Type-Preserving Compilation for
Formally Verified Software-Defined Delay Tolerant Networks

Jan-Paul Ramos-Dávila
Cornell University & NASA Langley Formal Methods Research Center

Software-Defined Delay Tolerant Networks

In space missions, reliable communication is critical yet exceptionally challenging. Traditional networks
fail under extreme distances, orbital dynamics, and intermittent connectivity. Software-Defined Delay
Tolerant Networks (SDDTNs) address these challenges through:

Store-and-forward mechanisms for handling disconnections
Dynamic routing based on predicted contact opportunities
Centralized control for resource optimization

Controller 1 Controller 2

Node 1 Node 2 Node 3 Node 4

−→ Control
— DTN

Cluster

Figure 1. SDDTN Architecture with Cluster Controllers

Mathematical Foundations

Our approach begins with Network Calculus, which provides a mathematical framework
for analyzing network behavior:

Core Structures
(D, ⊕, ⊗, 0, 1) forms a dioid where:

⊕: Alternative behaviors (e.g., routing paths)
⊗: Sequential composition (e.g., chained operations)
Distributivity: a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)

Service Curves
D(t) ≥ (A ∗ β)(t) ∀t ≥ 0

where:
D(t): Output data at time t

A(t): Input arrivals by time t

β: Service guarantee curve
∗: Min-plus convolution

Flow 1

Flow 2
⊕ ⊗ Result

Alternative Sequential

Figure 2. Network Calculus Operations

Coq Verification Framework

Interactive theorem proving in Coq enables mechanized verification of network proper-
ties:

Example: Header Validity
Theorem header_valid :

∀ (h: Header) (p: Packet),
process_packet p h →
valid_header h.

Formal Verification Guarantees

Property P4 NetQIR
Type Safety ✗ ✓

Header Validity ✗ ✓

Flow Conservation ✗ ✓

Protocol Compliance ✗ ✓

Resource Usage ✗ ✓

While P4 offers powerful abstractions for network programming, it lacks formal guarantees.
NetQIR introduces static verification to catch errors before deployment.

Type System and Proofs
Core Typing Rules

Γ, xi : τi ⊢ s : σ flow-conserved(s)
Γ ⊢ action a(xi : τi){s} : τi → σ

T-Action

Γ ⊢ e : τk ∀i. Γ ⊢ si : τ

Γ ⊢ match e {pi ⇒ si} : τ
T-Match

Key Theorems
Type Safety:

∀p, Γ. Γ ⊢ p : τ =⇒ ∃σ′, pkt′. ⟨p, σ, pkt⟩ →∗ ⟨σ′, pkt′⟩
Flow Conservation:

FlowIn(σ) = FlowOut(σ′) + Dropped(σ′)

From P4 to NetQIR: Example
P4 Implementation
action forward(macAddr_t dst, port_t port) {

std_meta.egress_spec = port;
hdr.eth.dst = dst;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

This becomes a dependently-typed operation:

NetQIR Translation
Forward :

∏
(dst : MacAddr)(port : Port).

{pkt : Packet | valid(pkt.ipv4)} →
{pkt′ : Packet |

pkt′.ttl = pkt.ttl − 1∧
valid(pkt′.ipv4)}

The type ensures:
TTL updates preserve packet validity
No unexpected packet drops
Port assignments are type-safe

Mechanized Proof Example
Theorem ttl_decrement_valid :

∀ (pkt: Packet),
valid_packet pkt →
pkt.ttl > 0 →
valid_packet (decrement_ttl pkt).

Proof.
intros pkt Hvalid Httl.
apply packet_validity_preservation; auto.
apply ttl_positive; auto.

Qed.

Compilation Pipeline

P4 Code

Parser

Semantic Analysis

Serialization

Coq Verification

Verified NetQIR

OCaml

OCaml

JSON

Coq

Extraction

Error Feedback

Figure 3. NetQIR Pipeline

The P4 code is first parsed using an
OCaml-based parser, which constructs an
AST representing the program’s structure.
A semantic analyzer then processes the AST
to check for correctness and annotate the
tree with information.
The annotated AST is then translated into
NetQIR code. This translation maps P4
constructs to their NetQIR equivalents while
preserving the program’s semantics.
The NetQIR code is serialized into a JSON
representation. The JSON format serves as
an intermediary that is both
machine-readable and suitable for input into
the Coq proof assistant.
The JSON representation is then parsed
within Coq to reconstruct the NetQIR
constructs using Coq’s data types. Any type
errors or inconsistencies detected during this
phase are reported back, providing feedback
for correction.

Match-Action Pipeline Integration

Bundle Protocol Processing

Parser Match DeparserInput Output

Extract Process Reassemble

Figure 4. MAP Architecture with Bundle Protocol Integration

Verified Properties
The Match-Action Pipeline guarantees:

∀ packet p, state σ :
• Header validity: valid(p) → valid(process(p))
• Flow conservation: flow(σ) = flow(next(σ))
• Protocol compliance: bp_valid(p) → bp_valid(process(p))

Network Flow Properties

ProcessFlow In

Flow Out

Dropped

FlowIn = FlowOut + Dropped
(Conservation Law)

Figure 5. Flow Conservation in NetQIR

Future Directions

Our framework opens several promising research directions:
Extended protocol verification for complete BP support
Real-time verification of dynamic network properties
Automated proof generation for common patterns

Github: janpaulpl jvr34@cornell.edu

https://github.com/janpaulpl
mailto:jvr34@cornell.edu

