
Incremental Specification Mining
CS 6156

Kate Meuse, Jan-Paul Ramos

1 ABSTRACT
Specification mining is fundamental to verifying area-specific code

invariants with runtime verification. However, the computational

overhead increases monstrously for non-trivially sized repositories

(> 100 MB). Similar problems are found in runtime monitoring, for

which evolutionary-aware tools have been developed in an attempt

to ameliorate complexity. However, in the context of specification

mining, current evolution-aware analysis just compounds complex-

ity further, due to the need for re-mining specifications at each

evolution in a repository’s lifespan. We propose the first model for

an incremental specification mining pipeline (ISM). By making use

of ISM, specification miners can reap the benefits from an evolu-

tionary aware system while getting rid of unnecessary overhead.

We also present alternative ideas for integrating ISM into existing

specification mining frameworks.

2 INTRODUCTION
Techniques for runtime monitoring, such as Monitoring-Oriented
Programming (MOP), monitors software against formally verified

correctness properties. Such techniques have been put into practice

with deployable tools for large-scale monitoring, i.e., JavaMOP [3].

JavaMOP adds instrumentation in software wherever monitored

events take place, and the instrumentation executes the code gener-

ated from a set of formal properties. While useful, one of the main

concerns with MOP-dependent techniques is the lack of automa-

tion for generating formal specifications. These specifications take

non-trivial intellectual power and time to come up with, and with

manual analysis, defeat the purpose of using lightweight over for-

mal methods which would require a similar amount of intellectual

power to develop.

A popular technique–and the focus of this report–for aiding

developers in producing a set of salient specifications is specification
mining (SM). Specification miners follow the maxim “Common

behavior is correct behavior. [2]" Although there are still problems

with the latest state-of-the-art specification miners (detailed below),

we believe that the probabilistic nature of SM is a strong contender

for alleviating lightweight overhead brought by manually coming

up with formal specifications for a runtime monitor.

One of the key advantages of SM is that it provides benefits

for redundant programming [2]. Exposed to large codebases, a

miner can collect and summarize API protocols, and probabilisti-

cally determine which protocol is correct for various versions of

a codebase. However, due to this exhaustive approach, specifica-

tion miners don’t scale well in the context of evolutionary-aware

monitoring systems. These systems make use of the accumulated

benefits demonstrated by [6], [7], to monitor multiple versions

of evolving software rather than a single version
1
. Specification

1
We define an evolution as a difference between in stages in the traces for a given

repository’s test classes.

miners are currently designed to instrument and mine specifica-

tions from a given repository, naively identifying each snapshot of

an evolutionary repository as independent projects. This requires

re-mining specifications for each snapshot of a repository, exponen-

tially increasing the overhead when paired with tools to ameliorate

the already existing problems in MOP-tools.

We propose a specification mining analog to evolutionary-aware

monitoring: evolutionary-aware specification mining. Concretely,

this is targeted towards incremental specification mining (ISM). ISM

uses the same techniques from evolutionary-aware program moni-

toring to identify when a given snapshot for a program qualifies as

an evolution, and will consequently only mine for all evolutions for

the entire lifetime of a repository. ISM also addresses questions in

the usefulness of certain specifications throughout the lifetime of a

repository, highlighting unique specifications for each snapshot, as

it will not re-mine specifications for the same traces.

Further, we present a background on evolutionary-aware sys-

tems and techniques, in addition to current tools that attempt

evolutionary-aware specification mining 3. In section 4, we talk

about our general approach, and in section 5 how these approaches

were implemented as several shell scripts that made use of exist-

ing specification miners and evolutionary-aware tools. In section

6 we present preliminary results from comparing a naive run on

an open-source repository with the evolutionary-aware approach.

Finally, in section 7 we discuss future directions to ISM.

3 BACKGROUND
Themain extension forMOP using an evolutionary-aware approach

is eMOP [4]. eMOP uses regression test selection (RTS), regression

property selection (RPS), and regression monitor selection (RMS)

for studying and monitoring the evolution of a repository through-

out multiple versions of software. For gathering knowledge of the

changes between two versions of software, eMOP uses RTS, which

has the added benefit that running fewer tests decreases runtime

overhead and triggers fewer violations! The key tool we use for

RTS analysis is therefore STARTS [5]. STARTS is efficient because

it does not require code instrumentation to find impacted tests,

therefore we don’t need a trade-off for the SM instrumentation

we’ll encounter later on. In addition, STARTS is a Maven plugin,

allowing for easy integration into our set of open-source projects.

From what we have gathered thus far, this is the first approach

toward an applicable ISM. Previous work in evolutionary-aware

SM is particularly desolated, with the exception of the SPECMATE

project [1]. SPECMATE generates incremental specifications for

a set of relevant properties. However, this project targets muta-

tion analysis rather than the natural evolution of industrial-sized

programs. This is useful for test case generation, in generating ad-

ditional runs to explore the execution space. However, we believe

an evolutionary-aware ISM technique can be implemented more

comfortably into existing evolutionary-aware frameworks, such as



Kate Meuse, Jan-Paul Ramos

eMOP, whereas SPECMATE is coupled too closely with generating

test suites.

4 APPROACH
At a high level, we are just assisting specification mining with

an oracle, given by STARTS, which determines which files have

changed.

4.1 Persistent Specifications
To find the persistent specifications, we use a selection of speci-

fication miners to obtain program traces of various open-source

repositories that use Maven as a build system. We then filter the

specs by the number of commits they appear in.

4.2 Regression Test Selection
STARTS allows us to identify which test classes have been affected

by a given evolution of the repository. This is particularly helpful

because we can easily pipe the test classes into methodtracer.jar
(a program for generating traces) in the following manner:

mvn test ${SKIPS} -DargLine="-javaagent:<Script>/
methodtracer.jar=all-tests@trace.include=<Evolution Traces>;instrument.exclude=<Non Evolution>"

We exclude the test classes which are not selected by STARTS

by comparing a global array for all test classes identified at the first

iteration, and comparing which ones are left out of the selected

analysis at each snapshot. Snapshots that are empty (hence no

evolution) are left out of the trace generation, therefore we are left

with a significantly lesser amount of traces and SM significantly

decreases in overhead.

5 TECHNIQUES
We began the semester by learning to run two main specification

miners, Javert[2] and BDD. This required composing a Dockerfile

that could run interactively as a shell for these miners, as they do

not use current package versions and require careful setup. The

Dockerfile is built on Ubuntu and includes Python 3.8 to run our

scripts and Java 8, which was able to support the miners. Some

repositories depended on different versions of Java, so we include

additional JDKs and modify the default Java on-the-fly.

Both Javert and BDD run on Java bytecode traces. We signifi-
cantly modified a script provided by Ayaka to work on multiple

code versions without cloning the repository unnecessarily. The

code versions were described in project files, which contained lists

of Git URLs, names, and commit SHAs. We generated project files

using a Python script that pulls a specified number of commit

hashes. Using those, we could generate basic traces.

To analyze persistent specifications, we created another script

to record which specifications were present in which commits.

We did this by creating a unique hash for every specification and

entering the commit numbers where that specification was found

into a dictionary. To obtain persistent or nearly-persistent specs, we

simply filtered by length.We then compare the number of persistent

specs for intervals of commits to see how the number of persistent

specs reduces over time. See Figure 1 for the overview.

To continue into our RTS analysis, we needed to integrate STARTS

into this process(2). We limit the program traces we obtain to only

Figure 1: Flowchart of persistent spec filtering

Figure 2: Flowchart of STARTS filtered mining

those created by the affected tests returned by STARTS(using the

select option). We pass the parsed program arguments from out

STARTS output to the method tracer JAR.

6 RESULTS
The revised program tracer and specification combination signif-

icantly reduced the number of produced specs. Frequently, there

will be very minimal additional specs generated due to a small

change in documentation or configuration file. While there used

to be hundreds of thousands of consistent commits for even small



Incremental Specification Mining
CS 6156

repositories, there are almost no persistent commits to no peris-

tent commits depending on the repository and the breadth of their

testing files. If the repository keeps all of their tests in one file, our

analysis is obviously less effective.

6.1 Issues
There were several issues throughout the project in regard to our

computers crashing, running our of memory, and running out of

space. We could not get any help from Cornell IT with server

space, therefore our benchmarks are made up of relatively small

repositories.

When setting up STARTS, there were VM binding issues for

detecting unconditionally starting the agent in Java 9. If not al-

ready, we recommend that the following caveat be mentioned in

the STARTS repository:

export JDK_JAVA_OPTIONS=-Djdk.attach.allowAttachSelf=true
when raising the error that Java Agent Could Not Be Attached

7 FUTUREWORK
There are several optimizations that can be taken place to further

ameliorate the runtime overhead of ISM. In particular, the integra-

tion of ISM with a system such as eMOP which takes into account

evolutionary aware analysis using RPS in addition to RTS. While

RTS is beneficial for smaller repositories, it lacks support for allow-

ing our pipeline to generate traces when test classes fail, ignoring

a significant portion of our traces. The codebase for our cur-
rent work can be found at https://github.com/cyankaet/spec-
miners

REFERENCES
[1] url: https://cordis.europa.eu/projects.

[2] Mark Gabel and Zhendong Su. “Javert: Fully Automatic Mining of General Tem-

poral Properties from Dynamic Traces”. In: SIGSOFT ’08/FSE-16. Atlanta, Geor-

gia: Association for ComputingMachinery, 2008, pp. 339–349. isbn: 9781595939951.

doi: 10.1145/1453101.1453150. url: https://doi.org/10.1145/1453101.1453150.

[3] Dongyun Jin et al. “JavaMOP: Efficient parametric runtime monitoring frame-

work”. In: 2012 34th International Conference on Software Engineering (ICSE).
2012, pp. 1427–1430. doi: 10.1109/ICSE.2012.6227231.

[4] Owolabi Legunsen, DarkoMarinov, andGrigore Rosu. “Evolution-AwareMonitoring-

Oriented Programming”. In: 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. Vol. 2. 2015, pp. 615–618. doi: 10.1109/ICSE.2015.206.

[5] Owolabi Legunsen, August Shi, and DarkoMarinov. “STARTS: STAtic regression

test selection”. In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). 2017, pp. 949–954. doi: 10.1109/ASE.2017.8115710.

[6] Francesco Logozzo et al. “Verification modulo Versions: Towards Usable Verifi-

cation”. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’14. Edinburgh, United Kingdom:

Association for Computing Machinery, 2014, pp. 294–304. isbn: 9781450327848.

doi: 10.1145/2594291.2594326. url: https://doi.org/10.1145/2594291.2594326.

[7] Lingming Zhang et al. “Regression Mutation Testing”. In: Proceedings of the
2012 International Symposium on Software Testing and Analysis. ISSTA 2012.

Minneapolis, MN, USA: Association for Computing Machinery, 2012, pp. 331–

341. isbn: 9781450314541. doi: 10.1145/2338965.2336793. url: https://doi.org/10.

1145/2338965.2336793.

https://github.com/cyankaet/spec-miners
https://github.com/cyankaet/spec-miners
https://cordis.europa.eu/projects
https://doi.org/10.1145/1453101.1453150
https://doi.org/10.1145/1453101.1453150
https://doi.org/10.1109/ICSE.2012.6227231
https://doi.org/10.1109/ICSE.2015.206
https://doi.org/10.1109/ASE.2017.8115710
https://doi.org/10.1145/2594291.2594326
https://doi.org/10.1145/2594291.2594326
https://doi.org/10.1145/2338965.2336793
https://doi.org/10.1145/2338965.2336793
https://doi.org/10.1145/2338965.2336793

	1 Abstract
	2 Introduction
	3 Background
	4 Approach
	4.1 Persistent Specifications
	4.2 Regression Test Selection

	5 Techniques
	6 Results
	6.1 Issues

	7 Future Work

