Jan-Paul Vincent Ramos-Davila

Research Statement

As systems grow more intricate, our ability to ensure their correctness and reliability faces
significant challenges. Traditional verification methods, rooted in testing and manual inspection,
struggle to keep pace with the exponential growth in system complexity and state spaces. My
research vision is to bridge this widening gap by developing innovative approaches that leverage
the synergy between type theory, modal logic, and automated reasoning. 1 aim to contribute to
a new generation of programming systems that empower developers to specify, verify, and reason
about complex software behaviors with unprecedented ease and precision.

My relatively unique background, combining formal training in philosophy with technical skill in
computer science, has profoundly shaped my approach to research. This interdisciplinary perspec-
tive has instilled in me a deep appreciation for mathematical rigor and the power of type systems
to capture and enforce complex properties. From philosophy, I've gained insights into the nature of
knowledge, belief, and reasoning—concepts that are fundamental to verification and formal meth-
ods. This background has led me to explore connections between modal logic and type theory, as
evidenced in my work on plausibility in modal logic and intuitionistic type theory in conceptual
engineering [6, 7].

Central to my approach is addressing the tension between abstract, high-level specifications that
promote clarity and composability, and the low-level implementations necessary for efficiency and
real-world integration. To tackle these challenges, I propose the following guiding principles:

1. Leverage type theory to capture domain-specific behaviors: Design expressive type
systems that can encode and enforce complex, domain-specific properties and constraints. This
approach aims to bridge the gap between high-level specifications and low-level implementations
by embedding behavioral information directly into the type system.

2. Build modular, reusable verification infrastructures: Develop flexible verification frame-
works that separate concerns between domain-specific frontends and sophisticated verification
backends. This modularity allows for the rapid adaptation to new domains while reusing core
verification techniques, centralizing expertise and reducing the barrier to entry for formal veri-
fication.

3. Automate reasoning via canonical representations: Design canonical representations of
program behaviors that enable automated reasoning and proof generation. This principle aims
to reduce the burden of manual proofs by leveraging domain-specific knowledge and algebraic
structures to automate the verification process.

My research has explored these principles across several domains, developing practical frame-
works for specifying and verifying complex system behaviors. In the domain of network protocols,
I developed a type-preserving compilation strategy for Software-Defined Delay-Tolerant Networks
(SDDTNSs) [1]. This work introduced Net@QIR, an intermediate representation designed to facilitate
type-preserving compilation from high-level languages like P4 to a formally verified representation.
By leveraging Network Calculus and algebraic methods, we proved key properties of SDDTNs,
including packet delivery correctness and delay bounds. The NetQIR type system ensures that
well-typed programs inherit guarantees provided by Network Calculus, bridging the gap between
theoretical foundations and practical implementations.

In the realm of gradual verification, I contributed to the development of Gradual CO, the
first gradual verifier for recursive heap data structures [2, 3]. This work addresses the challenge
of incremental specification and verification, allowing developers to smoothly transition between



Jan-Paul Vincent Ramos-Davila

static and dynamic checking. We designed a symbolic execution algorithm capable of handling
imprecise specifications, producing minimally sufficient run-time checks for soundness. To evaluate
the implementation’s correctness, I developed a property-based testing framework that empirically
assesses soundness by establishing a truthiness property of equivalence between Gradual CO and a
fully dynamic verifier [3].

Exploring the intersection of formal methods and blockchain technology, I extended our gradual
verification approach to smart contracts [4]. This work introduced a prototype for gradually veri-
fying Algorand smart contracts via the pyTEAL language, demonstrating how gradual verification
can enhance security, guarantee soundness and flexibility, and optimize resource usage in smart
contract interactions.

My work with Kleene Algebra with Tests focused on verifying the correctness of parallel compo-
sition in hardware description languages [5]. We developed a set of axioms for concurrent KAT and
used them to prove properties of parallel programs. This work provides a foundation for reasoning
about concurrent hardware designs using algebraic methods.

The common thread throughout this work is the development of practical, algebraic/type-
based approaches to verification that bridge the gap between high-level specifications and low-level
implementations. My philosophical background has been instrumental in this approach, allowing
me to draw connections between formal logic, type theory, and real-world engineering challenges.

Going forward, I am excited to pursue research that builds upon these experiences, focusing on
the intersection of type theory, automated reasoning, and practical verification. Specifically, I aim
to:

1. Design new modal type systems: Building on my experience with temporal logics and
philosophical insights into modality, I will explore how modal type systems can capture and
verify temporal properties of distributed systems and other domains where traditional type
systems fall short.

2. Develop automated reasoning techniques for domain-specific properties: Extending
my work at NASA, I will create new automated reasoning techniques tailored to specific domains
like network protocols, concurrent systems, and security-critical applications. This will involve
designing domain-specific logics, decision procedures, and proof tactics that can be integrated
into existing engineering workflows.

3. Create reusable verification infrastructures: Inspired by the Calyx project and my work
on Gradual Verification, I will develop modular, reusable verification frameworks that can be
adapted to various domains. These infrastructures will aim to centralize verification expertise,
making it easier for non-experts to apply formal methods to their specific problems.

4. Bridge the gap between formal methods and engineering practice: Addressing the
disconnect I observed at NASA, I will work on tools and methodologies that make formal ver-
ification more accessible to practicing engineers. This includes the automatic translation of
informal requirements to formal properties through automated reasoning.

The next era of computing will require dramatically more reliable and verifiable software sys-
tems. I am excited to apply ideas from programming language theory, formal logic, and philosophy
to build tools that make formal verification accessible and practical for a wide range of critical
applications.



Jan-Paul Vincent Ramos-Davila

References

[1] J. Ramos-Davila and A. E. Goodloe. Type-Preserving Compilation for Formally Verified Soft-
ware Defined Delay-Tolerant Networks.

[2] J. DiVincenzo et al. Gradual CO: Symbolic Execution for Efficient Gradual Verification.
[3] J. Ramos-Davila. Evaluating Soundness of a Gradual Verifier with Property Based Testing.

[4] H. Sun, K. Singh, J. Ramos-Davila, J. Aldrich, and J. DiVincenzo. Gradual Verification for
Smart Contracts.

[5] J. Ramos-Davila. Calyx + HardKAT: A Verified IR for Calyx.
[6] J. Ramos-Davila. A Home for Plausibility in Modal Logic.

[7] J. Ramos-Davila. A Home for Intuitionistic Type Theory in Conceptual Engineering.



