
1

Evaluating Soundness of a Gradual Verifier with Property
Based Testing

JAN-PAUL RAMOS-DÁVILA, Cornell University, USA
jvr34@cornell.edu

Gradual verification supports partial specifications by soundly applying static checking where possible and
dynamic checking when necessary. This approach supports incrementality and provides a formal guarantee
of verifiability. The first gradual verifier, Gradual 𝐶0, supports programs that manipulate recursive, mutable
data structures on the heap and minimizes dynamic checks with statically available information. The design
of Gradual 𝐶0 has been formally proven sound; however, this guarantee does not hold for its implementation.

In this paper, we introduce a lightweight approach to testing soundness of Gradual 𝐶0’s implementation.
This approach uses Property Based Testing to empirically evaluate soundness by establishing a truthiness
property of equivalence. Our approach verifies a test suite of incorrectly written programs and specifications
with both Gradual𝐶0 and a fully dynamic verifier for𝐶0, and then asserts an equivalence between the results of
the two verifiers using the dynamic verifier as ground truth. Any inconsistency between the results, indicates
a problem in Gradual C0’s implementation. We also show in this paper, as a proof of concept, that this
lightweight approach to testing Gradual 𝐶0’s soundness caught a number of significant implementation bugs
from Gradual 𝐶0’s issue tracker in GitHub. A number of these bugs were only previously caught by human
inspections of internal output of the tool. An automated generator for the test suite is our next research step
to increase the rigor of our evaluation and catch new bugs never found before.

CCS Concepts: • Theory of computation → Logic and verification; Separation logic;

Additional Key Words and Phrases: gradual verification, program correctness, property based testing

1 INTRODUCTION
Static verification is used to ensure the correctness of programs. Unfortunately, this approach to
verification requires users to specify programs completely and in great detail to support inductive
proofs of correctness. Further, static verification tools cannot provide verification feedback on
any partial specifications written on the way to complete static specification. Similarly, dynamic
verification experiences run-time costs that limit its practicality. [Bader et al. 2018] introduces the
idea of gradual verification, which soundly combines both static and dynamic verification techniques
to support the incremental specification and verification of programs. Inspired by gradual typing
[Garcia et al. 2016; Siek and Taha 2007, 2006], with gradual verification the programmer gains
control over the trade-offs between static and dynamic checking by way of partial specifications,
allowing the behavior of unspecified components to be verified at run-time. [Wise et al. 2020]
introduces the theory of gradual verification for programs that manipulate recursive heap data
structures (like trees, graphs, and lists). [Wise et al. 2020] proved such a gradual verification system
sound, and show its adherence to the gradual guarantee property—which states that relaxing
specifications does not introduce new static or dynamic verification errors. Finally, [DiVincenzo
et al. 2022] introduces the design and implementation of Gradual 𝐶0, the first gradual verifier for
recursive heap data structures inspired by [Wise et al. 2020]’s foundational theory. They built
Gradual 𝐶0 to minimize dynamic checking with statically available information and showed in a
performance study that Gradual 𝐶0 reduces run-time overhead by 50-90% on average compared to
dynamic verification.
Gradual 𝐶0’s design has been proven sound and will catch all violations of a specification.

However, there are no techniques available to ensure the implementation of Gradual 𝐶0 is correct.
While empirically evaluating Gradual 𝐶0’s performance in [DiVincenzo et al. 2022], Gradual 𝐶0
was used to verify thousands of partial specifications that are correct and approximate the gradual



1:2 Jan-Paul Ramos-Dávila

guarantee. A number of bugs were caught and fixed by hand, in which Gradual 𝐶0’s design
was implemented incorrectly. To complement the aforementioned evaluation that only looks at
correct specifications and programs, we introduce a property based testing (PBT) pipeline that
empirically evaluates the correctness of Gradual 𝐶0’s implementation through incorrect programs
and specifications. It has been shown [Claessen and Hughes 2000] that capturing the truthiness of
a property’s results with lightweight methods provides good coverage for finding implementation
bugs. In Gradual 𝐶0, the truthiness for all programs consists of a pair of outputs: dynamic and
gradual verification output message given by Gradual 𝐶0. Failed equivalence between this pair of
outputs informs us of bugs in Gradual𝐶0’s implementation that do not break the gradual guarantee
and would not have been caught otherwise.

2 APPROACH
We implement a three-stage pipeline framework that sequentially gradually verifies a program,
stores the output message, either a success or a failure message, followed by pure dynamic ver-
ification of the same program, and compares its output to the previously stored gradual output.
The three stages are composed of a reference model language with Gradual 𝐶0’s specifications, an
input generator which is a test suite of examples that are not supposed to verify correctly which
we randomly permute to test on, and a checker which compares the output from Gradual 𝐶0 and
Dynamic𝐶0 [1]. The checker establishes Dynamic𝐶0 as the ground truth, expecting either an error
or a pass from Gradual𝐶0 if Dynamic𝐶0’s output is a pass, but they should never differ if Dynamic
𝐶0’s output is an error.

The input generator is made up of a dozen programs that come from Gradual𝐶0’s benchmark test
suite. The methods from each test are changed to have incorrect specifications and implementations
that do not obey each other. The tests in the input generator also have to maintain certain ways of
stating specifications. To prevent a trivial failure in the Gradual𝐶0, programs must avoid specifying
preconditions and fold/unfolds that won’t be met while running. These folds control the availability
of predicate information, which is considered an iso-recursive interpretation of predicates. Because
static verifiers rely on iso-recursive reasoning, the static verification step in Gradual𝐶0 will trivially
fail with the presence of unmet predicate information.

Fig. 1. Checker architecture

To test the correctness of our tool, we retrospectively find bugs through Gradual 𝐶0’s issue
tracker on GitHub, and run the tool on our test suite. In addition to previously mentioned programs,
In addition to these programs, our test suite is expanded to include tests that implement failing
implementations from each issue in the issue tracker. A particularly interesting and significant issue
was originally caught by hand inspection of the internal output of Gradual 𝐶0 after the behavior
had been formalized in [Wise et al. 2020] as Footprint Splitting. In this issue, Gradual 𝐶0 was not
removing information from the optimistic heap, framed by an imprecise specification, when it



Evaluating Soundness of a Gradual Verifier with Property Based Testing 1:3

(a) Commits which address soundness issues (b) Custom loop example referenced in
Issue 34

Fig. 2. Tool analysis

should. Permissions would not be tracked inside precise methods that call imprecise methods or
methods with internal precision. In our input generator, the set of examples that trigger this issue
come from the binary search tree benchmark. This example fails the property because Gradual
𝐶0’s output would pass at the creation of the imprecise predicate, treeRemove, to delete a binary
search tree. This predicate is called in the postcondition of the tree removal function, and recreating
run-time permissions after the function is called is incorrect because it causes an accessibility
predicate to be missing. Our tool catches this failing property and returns Dynamic 𝐶0’s error.

3 TOOL ANALYSIS
We can further understand the usefulness of our tool by running our test suite on a point of Gradual
𝐶0’s GitHub commit history. Figure [2].a shows us which issues were caught by our tool. Our entire
test suite ran at a rollback of Gradual 𝐶0 to the dates listed under the Commit found column and
we specify which example in the suite found the bug if any.

This analysis helps to prove the efficacy of PBT in Gradual 𝐶0, capturing most bugs1. The only
issues that were not caught were due to a benchmark test that was not implemented in our test suite,
the AVL benchmark. A more exhaustive test suite that implements this test could have identified
all 7 soundness bugs.

4 CONCLUSION
We show that Property Based Testing is a practical tool for finding implementation bugs in Gradual
𝐶0 that do not follow the formal design. However, there are still challenges that must be addressed
to exhaust this lightweight method for a rigorous evaluation of bugs never found before. Currently,
the test suite is implemented by hand by iterating through the benchmark examples which all pass
the gradual guarantee.
This implementation has limited applicability due to the restrictive test suite. A promising

approach to expand the domain of bugs caught by our tool relies on iterating through all examples in
the benchmark test suite and breaking individual methods by generating random inputs that violate
each method’s specification. Nevertheless, we lay the groundwork for a consistent lightweight tool
which is the first automated method for finding implementation bugs in Gradual 𝐶0.

1Issues used for the analysis can be publicly accessed in gvc0 public repository and in silicon gv fork public repository.

https://github.com/gradual-verification/gvc0/
https://github.com/gradual-verification/silicon-gv


1:4 Jan-Paul Ramos-Dávila

REFERENCES
Johannes Bader, Jonathan Aldrich, and Éric Tanter. 2018. Gradual Program Verification. In International Conference on

Verification, Model Checking, and Abstract Interpretation. Springer, 25–46.
Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. SIGPLAN

Not. 35, 9 (sep 2000), 268–279. https://doi.org/10.1145/357766.351266
Jenna DiVincenzo, Ian McCormack, Hemant Gouni, Jacob Gorenburg, Mona Zhang, Conrad Zimmerman, Joshua Sunshine,

Éric Tanter, and Jonathan Aldrich. 2022. Gradual C0: Symbolic Execution for Efficient Gradual Verification. arXiv preprint
arXiv:2210.02428 (2022).

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM, New
York, NY, USA, 429–442. https://doi.org/10.1145/2837614.2837670

Jeremy Siek and Walid Taha. 2007. Gradual typing for objects. In European Conference on Object-Oriented Programming.
Springer, 2–27.

Jeremy G Siek and Walid Taha. 2006. Gradual typing for functional languages. In Scheme and Functional Programming
Workshop, Vol. 6. 81–92.

Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric Tanter, and Joshua Sunshine. 2020. Gradual verification
of recursive heap data structures.

https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/2837614.2837670

	Abstract
	1 Introduction
	2 Approach
	3 Tool Analysis
	4 Conclusion
	References

