
1

Optimization of a Gradual Verifier: Lazy evaluation of
Iso-recursive Predicates as Equi-recursive at Runtime

JAN-PAUL RAMOS-DÁVILA, Cornell University, USA
jvr34@cornell.edu, Advised by Jonathan Aldrich, Undergraduate, 9119779

Gradual verification supports partial specifications by soundly applying static checking where possible and
dynamic checking when necessary. This approach supports incrementality and provides a formal guarantee
of verifiability. The first gradual verifier, Gradual 𝐶0, supports programs that manipulate recursive, mutable
data structures on the heap and minimizes dynamic checks with statically available information. However,
the current approach for evaluating these dynamic checks is naive during incremental specificity. Dynamic
checks are re-asserted for all imprecise logic, even if these formulas might share the same trace path.

In this paper, we introduce an optimization pipeline for identifying and minimizing these common traces.
We accomplish this by treating all iso-recursive predicates as equi-recursive at runtime. To not break the
soundness of Gradual𝐶0, we do not make any changes to the semantic evaluation of the static verifier. Instead,
we preserve the evaluation of iso-recursive predicates statically and carry this information into Gradual
𝐶0’s Gradual Viper intermediate representation. By unrolling all static predicates as if they were dynamic
checks, we are able to correlate when the naive dynamic checks from the optimistic IR overlap. This allows
us to perform a more sophisticated predicate equivalence matching using an SMT solver. We suggest that
the lazy treatment of static specifications at the source level is more in line with the incremental philosophy
of gradual verification, and better supports more complex dynamic checks. We show the effectiveness with
our benchmarks of tree data structures. We also raise the question of synthesizing intermediate predicates to
bridge partial predicate matching.

CCS Concepts: • Theory of computation → Logic and verification; Separation logic;

Additional Key Words and Phrases: gradual verification, program correctness, second-order predicates

1 INTRODUCTION
Static verification is used to ensure the correctness of programs. Unfortunately, this approach to
verification requires users to specify programs completely and in great detail to support inductive
proofs of correctness. Further, static verification tools cannot provide verification feedback on
any partial specifications written on the way to complete static specification. Similarly, dynamic
verification experiences run-time costs that limit its practicality. [Bader et al. 2018] introduces the
idea of gradual verification, which soundly combines both static and dynamic verification tech-
niques to support the incremental specification and verification of programs. Inspired by gradual
typing [Garcia et al. 2016; Siek and Taha 2007, 2006], with gradual verification the programmer
gains control over the trade-offs between static and dynamic checking by way of partial specifica-
tions, allowing the behavior of unspecified components to be verified at run-time. [DiVincenzo
et al. 2022] introduces the design and implementation of Gradual 𝐶0, the first gradual verifier for
recursive heap data structures inspired by [Wise et al. 2020]’s foundational theory. Gradual 𝐶0
uses folds/unfolds to develop static specifications. Unfolding a predicate consumes the predicate
instance and introduces its body into the analysis. If the body has impreciseness (?), the predicate
is treated optimistically. Folding the predicate instance consumes its body in favor of the instance
itself, in order to satisfy any user-written specification. This controlling of predicate availability is
iso-recursive. We consequentially treat dynamic checks equi-recursively, which treats the predicate
as their complete unfolding [Summers and Drossopoulou 2013].
We built Gradual 𝐶0 to minimize dynamic checking with statically available information and

showed in a performance study that Gradual 𝐶0 reduces run-time overhead by 50-90% on average
compared to dynamic verification. However, these benchmarks do not take into account the average



1:2 Jan-Paul Ramos-Dávila

cases for which developers write incremental specifications, a study of mostly static systems with
minimal dynamic checks. For example, we can take a specification with an imprecise pre-condition
and precise post-condition, with precise loop invariants. Gradual 𝐶0 will naively, but soundly,
produce dynamic checks to satisfy the pre-condition because it will reason that these assertions
cannot be determined at runtime, as the user has specified. However, the static verifier does reason
about the specified loop invariants and post-conditions. The optimistic static verifier takes all the
predicate slices for which it could not reason statically, and asserts them in the same IR wherever
impreciseness (?) was introduced.

However, due to the verifier reasoning statically about the precise specifications, there comes an
overlapping between the dynamic verifier’s traces of execution and the already reasoned about
predicate slices, as part of a larger static predicate. Because the static verifier treats the predicates
iso-recursively, the unrolling of the body is fully not exposed and the dynamic verifier cannot make
sense of an overlapping between these sliced conditions. This is a consequence of over-impreciseness
from the user, which should be caught by the verifier.

2 EXAMPLE
Gradual 𝐶0 uses a set of benchmarks in the domain of tree data structures (linked list, AVL tree,
binary search tree, etc.). When we make the method in Figure [1] from the AVL benchmark
imprecise1, we encounter that at a certain trace in the IR, two dynamic asserts which could not be
reasoned about statically are followed by two static function calls. When we reason manually about
the execution of these static functions, the variables that the verifier’s SMT solver declared overlap
for the case _1 = node->leftHeight and _ = node->right. In addition, the dynamic assertions
coincide with the unrolled body of the static functions (for avlh := .. && root->leftHeight -
root->rightHeight < 2 && ..). This is particularly an issue for the verification of loop invariants,
which will re-assert the entire predicate for avlh when the loop might just affect a single branch of
the tree.

1 // Recursive function to insert a key in the subtree rooted
2 // with node and returns the new root of the subtree.
3 struct Node* insert(struct Node* node, int h, int key, struct Height *hp)
4 //@ requires ?;
5 //@ ensures ? && acc(hp->height) && avlh(\result, hp->height);
6 {

1 assert(_1 - node->leftHeight < 2); // Dynamic assertion
2 assert(node->leftHeight >= 0); // Dynamic assertion
3 avlh(node->right, _1, _ownedFields); // Static function call
4 avlh(_, node->leftHeight, _ownedFields); // Static function call

Fig. 1. Imprecise AVL method and resulting IR

3 APPROACH
We implement a (broadly) three-stage pipeline that preserves the semantic structure of static checks,
while just changing when we want dynamic checks to occur. In Section 2, we showed an example
for which the overlapping assertions are called in the same control flow. However, it is possible
that “independent” control flow might have side effects that result in the same traces. To reason
about these, we treat all assertions, no matter where in the IR they are, as a flattened set under
the same execution branch. To reason about the body of the static function, we have to treat the
1The example shown only has an imprecise pre and post-condition. However, the full example also exhibits imprecise
assertions in the loop invariants, which can be found here. The comments in the figure are added for demonstration
purposes.

https://github.com/gradual-verification/gvc0/blob/81d5ff3db8d3238168fce8ae14137a9db1d874b4/src/test/resources/quant-study/avlja.c0


Optimization of a Gradual Verifier: Lazy evaluation of Iso-recursive Predicates as Equi-recursive at
Runtime 1:3

function equi-recursively. This exposes the body at runtime, and we can now treat a full predicate
as sliced predicates. These sliced predicates are what make up the bucket of predicates which will
be candidates for overlapping and removal. Because we only care about the case for which runtime
information is re-asserted, the normal static function calls will stay independent of the new dynamic
condition, which guards the dynamic unrolled static functions.
Another assumption is an arbitrary unrolling. As iso-recursive functions are, non-surprisingly,

recursive, we need a stopping point for unrolling the body. Because we are dealing with tree
data structures, it is enough to assume that we can unroll the predicate once and not lose much
performance from subsequent predicate calls. However, for more advanced algorithms, a heuristic
for identifying a stopping point, such as unit-stuttering proposed by [Purandare et al. 2010] for
runtime monitors. With these assumptions, the three-stage pipeline is as follows:

• Slice construction: Predicates are gathered and unfolded to 1-depth if they are recursive.
This is done in the front-end of Gradual 𝐶0’s pipeline, at the source level, before any
verification happens.

• Equivalence identification: We keep track of the path condition2 and identifies which
conditions overlap and discard. This is using the back-end’s implementation of the Z3 SMT
solver as inherited by [Müller et al. 2016].

• Runtime assertions: We insert the unfolded predicate into the verified code body, by the
same mapping that keeps track of the imprecise specifications. The mappings for the traces
from the SMT solver are reasoned about in buckets, which simply follow from our front-end
metadata pre-processing (Slice construction). Finally, Figure [2] shows the final IR.

1 if (_ == node->right && _1 == node->leftHeight) { // New dynamic condition
2 avlh(node->right->left, node->right->leftHeight) // Unrolling at 1-depth
3 avlh(node->right->node->right, node->right->node->rightHeight)
4 assert(node->leftHeight - node->rightHeight < 2) // Exposed body at runtime
5 ...
6 } else {
7 avlh(node->right, _1, _ownedFields);
8 avlh(_, node->leftHeight, _ownedFields);
9 }

Fig. 2. Optimized IR

4 CONCLUSION
We show a technique for practically evaluating iso-recursive predicates as equi-recursive in Gradual
𝐶0. Such an approach also motivates reasoning about future gradual semantics in contrast with
the at-runtime implementation. However, there are is notable future work. Our implementation
not only works for assertions 𝑝 (𝑥);𝑝 (𝑦), but also on assertions 𝑝 (𝑥);𝑞(𝑥), as we’re only looking at
the unrolled body of such predicates. We can further abstract the cases for which predicate slices
overlap by reasoning through implication. For example, a predicate of the form 𝑝 (𝑥) := 𝑟 (𝑥) ∧𝑞′ (𝑥)
where 𝑞(𝑥) =⇒ 𝑞′ (𝑥) should evaluate immediately at assert 𝑞(𝑥); assert 𝑝 (𝑥), without
having to evaluate 𝑟 (𝑥).
Currently, this second-order predicate logic is difficult to reason about by making use of our

current back-end implementation for SMT solving. Exploring work with an oracle-guided synthesis
of possible candidates for targeting 𝑞(𝑥) [Polgreen et al. 2021] and determining their soundness
using an SMT solver would introduce sound partial predicate evaluation. Nonetheless, we lay the
groundwork for a sound approach to bridging the gap between static and dynamic analysis.
2The path condition is stored as part of the symbolic state, consisting of a boolean for impreciseness (how we identify the
predicate is candidate), a symbolic heap, a symbolic store, and a collection. All this information is reasoned about in Gradual
Viper’s back-end.



1:4 Jan-Paul Ramos-Dávila

REFERENCES
Johannes Bader, Jonathan Aldrich, and Éric Tanter. 2018. Gradual Program Verification. In International Conference on

Verification, Model Checking, and Abstract Interpretation. Springer, 25–46.
Jenna DiVincenzo, Ian McCormack, Hemant Gouni, Jacob Gorenburg, Mona Zhang, Conrad Zimmerman, Joshua Sunshine,

Éric Tanter, and Jonathan Aldrich. 2022. Gradual C0: Symbolic Execution for Efficient Gradual Verification. arXiv preprint
arXiv:2210.02428 (2022).

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM, New
York, NY, USA, 429–442. https://doi.org/10.1145/2837614.2837670

P. Müller, M. Schwerhoff, and A. J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based Reasoning. In
Verification, Model Checking, and Abstract Interpretation (VMCAI) (LNCS, Vol. 9583), B. Jobstmann and K. R. M. Leino
(Eds.). Springer-Verlag, 41–62.

Elizabeth Polgreen, Andrew Reynolds, and Sanjit A. Seshia. 2021. Satisfiability and Synthesis Modulo Oracles. https:
//doi.org/10.48550/ARXIV.2107.13477

Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. 2010. Monitor optimization via stutter-equivalent loop
transformation. In Proceedings of the ACM international conference on Object oriented programming systems languages and
applications. ACM. https://doi.org/10.1145/1869459.1869483

Jeremy Siek and Walid Taha. 2007. Gradual typing for objects. In European Conference on Object-Oriented Programming.
Springer, 2–27.

Jeremy G Siek and Walid Taha. 2006. Gradual typing for functional languages. In Scheme and Functional Programming
Workshop, Vol. 6. 81–92.

Alexander J Summers and Sophia Drossopoulou. 2013. A formal semantics for isorecursive and equirecursive state
abstractions. In European Conference on Object-Oriented Programming. Springer, 129–153.

Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric Tanter, and Joshua Sunshine. 2020. Gradual verification
of recursive heap data structures.

https://doi.org/10.1145/2837614.2837670
https://doi.org/10.48550/ARXIV.2107.13477
https://doi.org/10.48550/ARXIV.2107.13477
https://doi.org/10.1145/1869459.1869483

	Abstract
	1 Introduction
	2 Example
	3 Approach
	4 Conclusion
	References

