
Calyx + HardKAT: A Verified IR for Calyx - CS 6861 Final Project
Jan-Paul Ramos-Dávila

-

1 INTRODUCTION
The following pipeline is a proof of concept for verifying the naive

par operator in Calyx — an infrastructure for specifying hardware

accelerators — using a Kleene Algebra framework (aided by the al-

ready existing HardKAT project). It’s a common occurrence among

developers that while attempting to implement more robust formal

methods to verify their domain specific languages — specifically

those of the form of symbolic execution algorithms — it tends to be

difficult to reason about. The main issues we seek to tackle in this

project are:

• Ameliorate the issue of depending on various approxima-

tions and heuristics in symbolic execution algorithms, which

can lead to less precise results.

• Help developers understand non-carefully implemented al-

gorithms, which might produce non-rigorous results.

The implementation can be found at this GitHub repository. In-

structions for setup and prerequisites are specified in the README.

1.1 HardKAT
HardKAT [1] (Hardware Kleene Algebra with Tests) is a formal

framework designed to model and verify hardware accelerator de-

signs. It leverages the equational theory of Kleene Algebra with

Tests (KAT) to describe and reason about both sequential and con-

current hardware designs. HardKAT’s concurrency model extends

the traditional KAT with parallel composition and global state ma-

nipulations, allowing it to handle more complex and larger designs.

The following BNF describes the syntax for the subset of Hard-

KAT which deals with concurrency:

Global State 𝑔 ::= 𝑔1 | · · · | 𝑔𝑛 (1)

Observations 𝑎, 𝑣 ::= ⊤ | ⊥ | 𝑔𝑛 = 𝑛 | 𝑎 ∧ 𝑏 | 𝑎 ∨ 𝑏 | ¬𝑎 (2)

Global Actions 𝑔1 ↦→ 𝑛 (3)

Concurrency 𝑝 ∥ 𝑞 (4)

1.1.1 (Example) Bluespec SystemVerilog. BSV is a high-level hard-

ware description language that provides abstractions for designing

and simulating hardware. We can use BSV to show how it can be

described and verified in HardKAT.

1 module mkMux (input Bit in0 , input Bit in1 ,
2 input Bit sel , output Bit out);
3 rule mux_rule;
4 out <= sel ? in1 : in0;
5 endrule
6 endmodule

Listing 1: 1-bit Multiplexer

1.1.2 Global State and Observations. Let 𝑔 represent the global

state of the hardware.

Observations are characterized as follows:

• 𝑔𝑖𝑛0 = 0 or 𝑔𝑖𝑛0 = 1: State of input 𝑖𝑛0.

• 𝑔𝑖𝑛1 = 0 or 𝑔𝑖𝑛1 = 1: State of input 𝑖𝑛1.

• 𝑔𝑠𝑒𝑙 = 0 or 𝑔𝑠𝑒𝑙 = 1: State of select line 𝑠𝑒𝑙 .

• 𝑔𝑜𝑢𝑡 = 0 or 𝑔𝑜𝑢𝑡 = 1: State of output 𝑜𝑢𝑡 .

Actions are characterized as follows:

Assign 𝑔𝑜𝑢𝑡 based on 𝑔𝑠𝑒𝑙 :

• | 𝑔𝑜𝑢𝑡 ↦→ 𝑔𝑖𝑛0 if 𝑔𝑠𝑒𝑙 = 0

• | 𝑔𝑜𝑢𝑡 ↦→ 𝑔𝑖𝑛1 if 𝑔𝑠𝑒𝑙 = 1

In this simple example, there are no concurrent actions, but

HardKAT can handle parallel composition of actions:

• | 𝑔𝑜𝑢𝑡 ↦→ 𝑔𝑖𝑛0 ∥ 𝑔𝑠𝑒𝑙 = 0

• | 𝑔𝑜𝑢𝑡 ↦→ 𝑔𝑖𝑛1 ∥ 𝑔𝑠𝑒𝑙 = 1

1.2 Calyx
In Calyx [2], concurrency is managed through par blocks, which
allow parallel execution of groups but do not guarantee any specific

scheduling. This results in non-deterministic behavior, particularly

when there are potential data races. Here are the key definitions

related to concurrency in Calyx:

• Group: A basic unit of computation in Calyx, defining a set

of actions to be executed together.

• Parallel Block (par) : A control structure that allows multiple

groups to execute in parallel.

• Data Race: Occurs when two or more groups access the same

data item, with at least one access being a write, leading to

undefined behavior.

1 x = std_reg (32);
2 y = std_reg (32);
3

4 group g1 {
5 x.in = y.out;
6 x.write_en = 1'd1;
7 g1 [done] = x.done;
8 }
9 group g2 {
10 y.in = x.out;
11 y.write_en = 1'd1;
12 g2 [done] = y.done;
13 }
14

15 control {
16 par {
17 g1;
18 g2;
19 }
20 }

Listing 2: Calyx program with non-determinism due to par
blocks

In this program, g1 and g2 can execute in parallel, but without

any synchronization, leading to non-deterministic results.

https://github.com/janpaulpl/CalyxHardKAT

Cornell University, Introduction to Kleene Algebra, Jan-Paul Ramos-Dávila

2 AXIOMATIZATIONS
We take it to condense the overall HardKAT framework into a set

of theorems which match up with the complexities of the Calyx

par construct. Firstly, the code and theorems for HardKAT are still

unpublished, and although the authors have graciously provided

feedback during this process, we must extract specific theorems

which do not necessarily hold in the overall HardKAT framework.

Secondly, the general framework has severe implementation issues

for building front ends with different HDL’s (for example, BSV and

Calyx have significantly different behaviors for non-determinism as

will be described in 1.2). Therefore, we take these axiomatizations

as non-trivially different from the overall HardKAT framework.

• Sequential Composition:

(𝑝 · 𝑞) · 𝑟 = 𝑝 · (𝑞 · 𝑟) (Associativity)

𝑝 · 1 = 𝑝 (Identity)

• Parallel Composition:

𝑝 ∥ 𝑞 = 𝑞 ∥ 𝑝 (Commutativity)

(𝑝 ∥ 𝑞) ∥ 𝑟 = 𝑝 ∥ (𝑞 ∥ 𝑟) (Associativity)

𝑝 ∥ (𝑞 + 𝑟) = (𝑝 ∥ 𝑞) + (𝑝 ∥ 𝑟) (Distributivity over Union)

𝑝 ∥ 0 = 𝑝 (Identity)

• Observations:

𝑎 ∧ ⊤ = 𝑎

𝑎 ∨ ⊥ = 𝑎

¬(¬𝑎) = 𝑎

𝑎 ∧ ¬𝑎 = ⊥

2.1 Relating HardKAT and Calyx’s Concurrency
Semantics

2.1.1 (Annotation) Undefined Behavior for Data Races. If 𝑝 ∥ 𝑞

results in a data race, it leads to an undefined state 𝜖 .

2.1.2 (Annotation) Non-Deterministic Communication. HardKAT
can model non-deterministic communication (this is clarified in

the next section) between par arms without guarantees of specific

visibility.

2.1.3 (Theorem) Correctness of Mux. If 𝑔𝑠𝑒𝑙 = 0, then 𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛0.

Similarly, if 𝑔𝑠𝑒𝑙 = 1, then 𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛1.

(𝑔𝑠𝑒𝑙 = 0 ∧ 𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛0) ∨ (𝑔𝑠𝑒𝑙 = 1 ∧ 𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛1)
is an invariant.

2.2 HardKAT in the context of Calyx’s
Concurrency

Using HardKAT’s equational theory, we can model the concurrency

semantics of Calyx’s par blocks

2.2.1 (Theorem) Correctness with Synchronization. Consider the
following Calyx program:

1 x = std_reg (32);
2 y = std_reg (32);
3

4 group g1 {

5 x.in = y.out;
6 x.write_en = 1'd1;
7 g1 [done] = x.done;
8 }
9 group g2 {
10 y.in = x.out;
11 y.write_en = 1'd1;
12 g2 [done] = y.done;
13 }
14

15 control {
16 par {
17 seq {
18 g1;
19 @sync (1) g1_sync;
20 }
21 seq {
22 g2;
23 @sync (1) g2_sync;
24 }
25 }
26 }

Listing 3: Calyx program with synchronization

Using HardKAT, we can express the synchronization as follows:

• 𝑔1 ∥ 𝑔2: Parallel execution of g1 and g2.
• |𝑔𝑥 ↦→ 𝑔𝑦 ∥ |𝑔𝑦 ↦→ 𝑔𝑥 : Potential data race without synchro-

nization.

• Synchronization points ensure visibility:

𝑔𝑥 = 𝑔𝑦 (Before g1_sync and g2_sync)

2.2.2 (Theorem) For the mux example. If 𝑔𝑠𝑒𝑙 = 0, then 𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛0.

Similarly, if 𝑔𝑠𝑒𝑙 = 1, then 𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛1.

(𝑔𝑠𝑒𝑙 = 0 ∧ 𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛0) ∨ (𝑔𝑠𝑒𝑙 = 1 ∧ 𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛1)

is an invariant.

By incorporating synchronization points using @sync, we en-
sure that concurrent groups in Calyx can safely communicate and

observe events, thereby eliminating non-determinism and ensuring

predictable behavior. Note this is not the current implementation

of Calyx, as parallelism does not have a formal semantics yet. Thus,

encompassing non-determinism is essential for implementation.

However, section 4.2 discusses a more nuance implementation with

the assumption of a formalized sync operator.

2.2.3 Calyx’s Symbolic Executor. The symbolic execution frame-

work translates Calyx programs into their Racket DSL equivalents,

enabling verification of a broader set of hardware architectures.

Currently, parallel execution is handled using the ‘par-to-seq‘ pass,

which sequentializes parallel blocks to simplify verification. For

example, pipelines, a common form of hardware parallelism, can

be verified by sequentializing their stages. Inline pass inlining sim-

plifies the verification of subcomponents by flattening their hier-

archical structure. To ensure end-to-end verification, the system

validates each compiler pass to ensure it preserves functional cor-

rectness. This involves comparing the initial and final programs

using symbolic execution and SMT solvers to prove equivalence.

3 IMPLEMENTATION
The following pipeline defines a robust Calyx-to-HardKAT transla-

tor, integrate it into the Calyx compiler, and use symbolic execution

Calyx + HardKAT: A Verified IR for Calyx - CS 6861 Final Project Cornell University, Introduction to Kleene Algebra,

to verify the correctness of hardware accelerator designs. This ap-

proach leverages the equational theory of HardKAT to handle both

sequential and concurrent constructs.

3.1 Parser
This parser module reads Calyx source code and generate an AST

representation of the program.

1 use calyx:: parser ::{ parse_program };
2 use calyx::ast::{ Program , Group};
3

4 fn parse_calyx_program(source: &str) -> Program {
5 parse_program(source).unwrap ()
6 }

Listing 4: Parser Snippet

3.2 Translator
ARust module translates the Calyx AST into HardKAT Intermediate

Representation (IR). The translation rules for the sequential and

concurrent constructs following the previous definitions. It converts

the parsed Calyx AST into HardKAT IR, handling both sequential

and concurrent constructs.

1 use calyx::ast::{ Program , Group , Control };
2 use hardkat ::ir::{ HardKATProgram , HardKATGroup };
3

4 fn translate_to_hardkat(program: Program) ->
HardKATProgram {

5 let mut hk_program = HardKATProgram ::new();
6

7 csharp
8 Copy code
9 for group in program.groups {
10 let hk_group = translate_group(group);
11 hk_program.add_group(hk_group);
12 }
13

14 hk_program
15 }
16

17 fn translate_group(group: Group) -> HardKATGroup {
18 let mut hk_group = HardKATGroup ::new(group.name);
19

20 scss
21 Copy code
22 for action in group.actions {
23 let hk_action = translate_action(action);
24 hk_group.add_action(hk_action);
25 }
26

27 hk_group
28 }
29

30 fn translate_action(action: Action) -> HardKATAction {
31 match action {
32 Action ::Seq(actions) => {
33 let hk_actions = actions.into_iter ().map(translate_action

).collect ();
34 HardKATAction ::Seq(hk_actions)
35 },
36 Action ::Par(actions) => {
37 let hk_actions = actions.into_iter ().map(translate_action

).collect ();
38 HardKATAction ::Par(hk_actions)
39 },
40 // Handle other action types ...
41 }

Listing 5: Translator Snippet

3.3 Integration
We then extend the Calyx compiler to include a pass for translating

to HardKAT IR. This ensures that the translated IR can be processed

by the subsequent stages of the Calyx compiler.

1 use calyx:: passes ::{ Pass};
2 use hardkat ::ir::{ HardKATProgram };
3

4 struct HardKATPass;
5

6 impl Pass for HardKATPass {
7 fn run(&self , program: &mut Program) -> Result <(), String

> {
8 let hk_program = translate_to_hardkat(program.clone());
9 program.set_hardkat_ir(hk_program);
10 Ok(())
11 }
12 }

Listing 6: Calyx Compiler Snippet

3.4 Symbolic Execution
The symbolic execution tool executes Calyx programs symbolically,

tracking the state of each variable and the conditions under which

each state transition occurs.

1 use calyx::sexp ::{ SymbolicExecutor };
2

3 fn symbolic_execute(program: &Program) {
4 let executor = SymbolicExecutor ::new(program);
5 executor.run();
6 }

Listing 7: Symbolic Execution Snippet

4 RUNNING EXAMPLE
Consider the following example of a Calyx program that demon-

strates parallelism and the proposed @sync annotation for synchro-

nization:

1 component main() -> () {
2 cells {
3 x = std_reg (32);
4 y = std_reg (32);
5 }
6 wires {
7 group g1 {
8 x.in = y.out;
9 x.write_en = 1'd1;
10 g1 [done] = x.done;
11 }
12 group g2 {
13 y.in = x.out;
14 y.write_en = 1'd1;
15 g2 [done] = y.done;
16 }
17 }
18 control {
19 par {

Cornell University, Introduction to Kleene Algebra, Jan-Paul Ramos-Dávila

20 seq {
21 g1;
22 @sync (1) g1;
23 }
24 seq {
25 g2;
26 @sync (1) g2;
27 }
28 }
29 }
30 }

Listing 8: Calyx Program with @sync

This program attempts to swap the values of two registers, x
and y, in parallel. The @sync(1) annotation ensures that the events

from both parallel sequences are visible to each other.

4.1 Translation to HardKAT IR
The Calyx program can be translated into HardKAT IR using the

defined translation rules. The translated HardKAT IR will reflect the

parallel execution and synchronization semantics. The translated

HardKAT IR ensures that the parallel execution semantics of the

Calyx program are preserved and that synchronization points are

correctly handled.

1 HardKATProgram {
2 groups: [
3 HardKATGroup {
4 name: "g1",
5 actions: [
6 HardKATAction :: Assign("x.in", "y.out"),
7 HardKATAction :: Assign("x.write_en", "1'd1"),
8 HardKATAction ::Check("x.done")
9]
10 },
11 HardKATGroup {
12 name: "g2",
13 actions: [
14 HardKATAction :: Assign("y.in", "x.out"),
15 HardKATAction :: Assign("y.write_en", "1'd1"),
16 HardKATAction ::Check("y.done")
17]
18 }
19] ,
20 control: HardKATControl ::Par(
21 HardKATControl ::Seq(
22 vec! [
23 HardKATAction ::Group("g1"),
24 HardKATAction ::Sync (1)
25]
26),
27 HardKATControl ::Seq(
28 vec! [
29 HardKATAction ::Group("g2"),
30 HardKATAction ::Sync (1)
31]
32)
33)
34 }

Listing 9: HardKAT IR

4.2 More on Non-Determinism in Calyx
Calyx’s current parallel semantics allow for non-deterministic ex-

ecution of par blocks, which can lead to undefined behavior due

to data races. The @sync annotation is a proposed solution to in-

troduce synchronization points in parallel programs, ensuring that

certain events are visible across parallel threads.

An alternative approach to addressing non-determinism could

involve introducing explicit communication channels or memory

fences that enforce order and visibility constraints between parallel

threads. This approach would provide stronger guarantees about

the execution order and state visibility in parallel programs.

4.2.1 (Example) Here is a concrete example of how the @sync an-
notation can be used to ensure correct synchronization in a parallel
Calyx program.

1 component main() -> () {
2 cells {
3 x = std_reg (32);
4 y = std_reg (32);
5 }
6 wires {
7 group g1 {
8 x.in = y.out;
9 x.write_en = 1'd1;
10 g1 [done] = x.done;
11 }
12 group g2 {
13 y.in = x.out;
14 y.write_en = 1'd1;
15 g2 [done] = y.done;
16 }
17 }
18 control {
19 par {
20 seq {
21 g1;
22 @sync (1) g1;
23 }
24 seq {
25 g2;
26 @sync (1) g2;
27 }
28 }
29 }
30 }

Listing 10: Calyx Program with Explicit Synchronization

5 FORMALISMS
Now we want to handwritten proofs to verify the validity of our

newly implemented semantics. The following are axiomatizations

for HardKAT from standard KA semantics:

1 + 𝑥∗𝑥 ≤ 𝑥∗

1 + 𝑥𝑥∗ ≤ 𝑥∗

𝑏 + 𝑎𝑥 ≤ 𝑥 =⇒ 𝑎∗𝑏 ≤ 𝑥

𝑏 + 𝑥𝑎 ≤ 𝑥 =⇒ 𝑏𝑎∗ ≤ 𝑥

For parallel composition (∥):
(1) 𝑝 ∥ 𝑞 = 𝑞 ∥ 𝑝 (Commutativity)

(2) (𝑝 ∥ 𝑞) ∥ 𝑟 = 𝑝 ∥ (𝑞 ∥ 𝑟) (Associativity)

(3) 𝑝 ∥ (𝑞 + 𝑟) = (𝑝 ∥ 𝑞) + (𝑝 ∥ 𝑟) (Distributivity over +)
(4) 𝑝 ∥ 0 = 𝑝 (Identity)

(5) If 𝑝 ∥ 𝑞 results in a data race, it leads to an undefined state 𝜖 .

Calyx + HardKAT: A Verified IR for Calyx - CS 6861 Final Project Cornell University, Introduction to Kleene Algebra,

5.1 Formalizing states
5.1.1 Global State.

𝑔 ::= 𝑔1 | · · · | 𝑔𝑛
5.1.2 Observations.

𝑎, 𝑣 ::= ⊤ | ⊥ | 𝑔𝑛 = 𝑛 | 𝑎 ∧ 𝑏 | 𝑎 ∨ 𝑏 | ¬𝑎

5.1.3 Global Actions.
| 𝑔1 ↦→ 𝑛

5.2 Proofs of Basic Axioms in KAT
5.2.1 1 + 𝑥∗𝑥 ≤ 𝑥∗.

Proof. By definition of the Kleene star (𝑥∗):

1 + 𝑥∗𝑥 ≤ 𝑥∗

□

5.2.2 1 + 𝑥𝑥∗ ≤ 𝑥∗.

Proof. By definition of the Kleene star (𝑥∗):

1 + 𝑥𝑥∗ ≤ 𝑥∗

□

5.2.3 𝑏 + 𝑎𝑥 ≤ 𝑥 =⇒ 𝑎∗𝑏 ≤ 𝑥 .

Proof. Assume 𝑏 +𝑎𝑥 ≤ 𝑥 . We need to show 𝑎∗𝑏 ≤ 𝑥 . Base case

(𝑛 = 0):

𝑎0𝑏 = 1 · 𝑏 = 𝑏 ≤ 𝑥 (by assumption)

Inductive step: Assume 𝑎𝑛𝑏 ≤ 𝑥 for some 𝑛 ≥ 0. We need to show

𝑎𝑛+1𝑏 ≤ 𝑥 .

𝑎𝑛+1𝑏 = 𝑎 · 𝑎𝑛𝑏 ≤ 𝑎 · 𝑥 (by inductive hypothesis)

Since 𝑎 · 𝑥 ≤ 𝑥 :

𝑎𝑛+1𝑏 ≤ 𝑥

By induction, 𝑎∗𝑏 ≤ 𝑥 . □

5.2.4 𝑏 + 𝑥𝑎 ≤ 𝑥 =⇒ 𝑏𝑎∗ ≤ 𝑥 .

Proof. Assume 𝑏 +𝑥𝑎 ≤ 𝑥 . We need to show 𝑏𝑎∗ ≤ 𝑥 . Base case

(𝑛 = 0):

𝑏𝑎0 = 𝑏 · 1 = 𝑏 ≤ 𝑥 (by assumption)

Inductive step: Assume 𝑏𝑎𝑛 ≤ 𝑥 for some 𝑛 ≥ 0. We need to show

𝑏𝑎𝑛+1 ≤ 𝑥 .

𝑏𝑎𝑛+1 = 𝑏 · 𝑎 · 𝑎𝑛 ≤ 𝑥 · 𝑎 · 𝑎𝑛 (by inductive hypothesis)

Since 𝑥 · 𝑎 ≤ 𝑥 :

𝑏𝑎𝑛+1 ≤ 𝑥

By induction, 𝑏𝑎∗ ≤ 𝑥 . □

5.3 Proofs for Parallel Composition
5.3.1 Proof of Commutativity.

Theorem 5.1. For all programs 𝑝 and 𝑞, 𝑝 ∥ 𝑞 = 𝑞 ∥ 𝑝 .

Proof. By definition, parallel composition is commutative:

𝑝 ∥ 𝑞 ≡ execute 𝑝 and 𝑞 in parallel ≡ 𝑞 ∥ 𝑝
□

5.3.2 Proof of Associativity.

Theorem 5.2. For all programs 𝑝, 𝑞, 𝑟 , (𝑝 ∥ 𝑞) ∥ 𝑟 = 𝑝 ∥ (𝑞 ∥ 𝑟).

Proof. By definition, parallel composition is associative:

(𝑝 ∥ 𝑞) ∥ 𝑟 ≡ execute 𝑝, 𝑞, and 𝑟 in parallel ≡ 𝑝 ∥ (𝑞 ∥ 𝑟)
□

5.3.3 Proof of Distributivity over +.

Theorem 5.3. For all programs 𝑝, 𝑞, 𝑟 , 𝑝 ∥ (𝑞+𝑟) = (𝑝 ∥ 𝑞) + (𝑝 ∥
𝑟).

Proof. By definition of parallel composition and distributivity:

𝑝 ∥ (𝑞+𝑟) ≡ execute 𝑝 in parallel with either 𝑞 or 𝑟 ≡ (𝑝 ∥ 𝑞)+(𝑝 ∥ 𝑟)
□

5.3.4 Proof of Identity.

Theorem 5.4. For all programs 𝑝 , 𝑝 ∥ 0 = 𝑝 .

Proof. By definition of parallel composition and the identity

element:

𝑝 ∥ 0 ≡ execute 𝑝 in parallel with an empty program ≡ 𝑝

□

5.4 Handling Undefined Behavior
Theorem 5.5. If 𝑝 ∥ 𝑞 results in a data race, it leads to an unde-

fined state 𝜖 .

Proof. Assume 𝑝 ∥ 𝑞 causes a data race. By definition of data

races in parallel composition:

𝑝 ∥ 𝑞 causes a data race =⇒ execution state = 𝜖

This follows directly from the definition that a data race leads to

an undefined behavior state 𝜖 . □

6 APPLYING HARDKAT TO CALYX
SEMANTICS

The following code represents a snippet of the translation object in

the pipeline.

1 component main() -> () {
2 cells {
3 x = std_reg (32);
4 y = std_reg (32);
5 }
6 wires {
7 group g1 {
8 x.in = y.out;
9 x.write_en = 1'd1;
10 g1 [done] = x.done;
11 }
12 group g2 {
13 y.in = x.out;
14 y.write_en = 1'd1;
15 g2 [done] = y.done;
16 }
17 }
18 control {
19 par {
20 seq {
21 g1;
22 @sync (1) g1;

Cornell University, Introduction to Kleene Algebra, Jan-Paul Ramos-Dávila

23 }
24 seq {
25 g2;
26 @sync (1) g2;
27 }
28 }
29 }
30 }

Listing 11: Calyx Program with Synchronization

6.1 Proofs with Observations in HardKAT
6.1.1 (Proof) Handling Observations. Consider an observation 𝑎

where 𝑎 ::= 𝑔𝑛 = 𝑛 | 𝑎 ∧ 𝑏 | 𝑎 ∨ 𝑏 | ¬𝑎.

6.1.2 𝑔𝑛 = 𝑛.

Proof. We need to show that the observation 𝑔𝑛 = 𝑛 holds.

𝑔𝑛 = 𝑛 (by definition of the global state observation)

This observation states that the global state 𝑔𝑛 is equal to 𝑛. This

is a direct definition and holds by construction of the observation.

□

6.1.3 𝑎 ∧ 𝑏.

Proof. Assume 𝑎 and 𝑏 are two observations. We need to show

𝑎 ∧ 𝑏.

𝑎 ∧ 𝑏 (by definition of logical conjunction)

This observation states that both 𝑎 and 𝑏 hold simultaneously.

This holds if and only if both individual observations are true. □

6.1.4 𝑎 ∨ 𝑏.

Proof. Assume 𝑎 and 𝑏 are two observations. We need to show

𝑎 ∨ 𝑏.

𝑎 ∨ 𝑏 (by definition of logical disjunction)

This observation states that at least one of 𝑎 or 𝑏 holds. This

holds if at least one of the individual observations is true. □

6.1.5 ¬𝑎.

Proof. Assume 𝑎 is an observation. We need to show ¬𝑎.

¬𝑎 (by definition of logical negation)

This observation states that 𝑎 does not hold. This holds if and

only if the observation 𝑎 is false. □

7 CONCLUSION AND FUTURE PROPOSAL
Overall, we showcase a cohesive solution to reasoning about sym-

bolic execution algorithms in Calyx by implementing a translation

between the Calyx sourcecode and the HardKAT IR. Because of

time constraints, we were not able to do a formal test suite to com-

pare the efficacy of the HardKAT semantics in identifying mistakes

in the symbolic executor algorithm. However, we hope to show that

the first snippet of a working front-end for a KAT framework that

targets HDL. In addition, we also propose that in a future project,

it would be possible to reason about complicated semantics, such

as those showcased by par, using domain-specific KAT semantics,

which would alleviate the stress on using a general framework for

implementing front-ends in various compilers.

REFERENCES
[1] Axiomatic concurrency in hardkat. https://www.youtube.com/watch?v=

LgOyvv9ZRPU.

[2] Calyx Evaluation. https://github.com/cucapra/calyx-evaluation.

https://www.youtube.com/watch?v=LgOyvv9ZRPU
https://www.youtube.com/watch?v=LgOyvv9ZRPU
https://github.com/cucapra/calyx-evaluation

	1 Introduction
	1.1 HardKAT
	1.2 Calyx

	2 Axiomatizations
	2.1 Relating HardKAT and Calyx’s Concurrency Semantics
	2.2 HardKAT in the context of Calyx's Concurrency

	3 Implementation
	3.1 Parser
	3.2 Translator
	3.3 Integration
	3.4 Symbolic Execution

	4 Running Example
	4.1 Translation to HardKAT IR
	4.2 More on Non-Determinism in Calyx

	5 Formalisms
	5.1 Formalizing states
	5.2 Proofs of Basic Axioms in KAT
	5.3 Proofs for Parallel Composition
	5.4 Handling Undefined Behavior

	6 Applying HardKAT to Calyx Semantics
	6.1 Proofs with Observations in HardKAT

	7 Conclusion and Future Proposal
	References

