
Introduction

Motivation
Historically, we are familiar with a family of 
formal verification techniques as providing 
rigorous approaches to ensure the correctness 
of computer programs, in particular static 
verification. These techniques require the 
programmer to fully specify a program’s 
predicted behavior to give formal assurance 
that the implementation will abide by what 
the programmer has in mind: a specification. 
Unfortunately, this approach does not support 
incrementality, as it requires the previously 
mentioned full specification to support quality 
code coverage. Further, static verification tools 
cannot provide verification feedback on any 
partial specifications written on the way to 
complete static specification. This means that if a 
user has a program and they only want to verify 

a particular method, they have to pedantically 
specify the entire method’s annotations for the 
static verifier to receive with full coverage. This 
includes completely specifying loop invariants, 
preconditions, postconditions, etc., none of 
which can be at the discretion of the verifier, 
as it does not have enough information to 
make inferences. On the other hand, dynamic 
verification techniques focus at asserting specific 
test cases based on inputs given by a user at run-
time. This technique avoids having to specify all 
information in a program, albeit it experiences 
massive overhead in regards to run-time costs 
that limit its practicality. In addition, dynamic 
verification techniques do not provide full code 
coverage and are meant to work in tandem with 
formal verification techniques.

Bader, Aldrich, and Tanter (2018), introduces 
the idea of gradual verification, which soundly 
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Gradual verification supports partial specifications by soundly applying static checking where 
possible and dynamic checking when necessary. This approach supports incrementality and 
provides a formal guarantee of verifiability. The first gradual verifier, Gradual C0, supports 
programs that manipulate recursive, mutable data structures on the heap and minimizes dynamic 
checks with statically available information. The design of Gradual C0 has been formally proven 
sound; however, this guarantee does not hold for its implementation.	

In this paper, we introduce a lightweight approach to testing the soundness of Gradual C0's 
implementation. This approach uses Property Based Testing to empirically evaluate soundness by 
establishing a truthiness property of equivalence. Our approach verifies a test suite of incorrectly 
written programs and specifications with both Gradual C0 and a fully dynamic verifier for C0, 
and then asserts an equivalence between the results of the two verifiers using the dynamic verifier 
as ground truth. Any inconsistency between the results indicates a problem in Gradual C0's 
implementation. We also show in this paper, as a proof of concept, that this lightweight approach 
to testing Gradual C0's soundness caught a number of significant implementation bugs from 
Gradual C0's issue tracker in GitHub. A number of these bugs were only previously caught by 
human inspections of internal output of the tool. An automated generator for the test suite is our 
next research step to increase the rigor of our evaluation and catch new bugs.
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combines both static and dynamic verification 
techniques to support the incremental specifi-
cation and verification of programs. Inspired by 
gradual typing (Garcia et al. 2016; Siek & Taha, 
2006; Siek & Taha, 2007), with gradual verifi-
cation the programmer gains control over the 
trade-offs between static and dynamic check-
ing by way of partial specifications, allowing the 
behavior of unspecified components to be ver-
ified at run-time. Wise et al. (2020) introduces 
the theory of gradual verification for programs 
that manipulate recursive heap data structures 
(trees, graphs, lists, etc.). Wise et al. proved such 
a gradual verification system sound, and showed 
its adherence to the gradual guarantee proper-
ty – relaxing specifications does not introduce 
new static or dynamic verification errors, if it 
is sound at full static specifications, then it is 
sound at the relaxation.

DiVincenzo et al. (2022) introduces the design 
and implementation of Gradual C0, the first 
gradual verifier for recursive heap data structures 
inspired by Wise et al.'s foundational theory. It 
is an extension of the pedagogical C0 language 
used by Carnegie Mellon University to teach the 
fundamentals of dynamic verification with a 
subset of C that supports dynamic specifications, 
albeit it lacks memory allocation functions well 
known in C, e.g. malloc. Gradual C0 is built 
to minimize dynamic checking with statically 
available information. DiVincenzo et al. (2022) 
also shows in a performance study that Gradual 
C0 reduces run-time overhead by 50-90% on 
average compared to dynamic verification. This 
shows that Gradual C0 is—conservatively—the 
most optimal alternative to dynamic verifiers, as 
the programmer can choose to statically specify 
trivial control flow in their program and remove 
significant overhead that would otherwise have 
been computed at runtime. With this relaxation 
in specifications, the user can also focus on 
other parts of the program if they verify a more 
complex aspect.

Introduction

Framework
Separation logic, introduced by Reynolds (2002), 
supports static verification of the programs 
that use the heap structure, a particular part 
in memory with an ordering property which 
establishes a maximum, greater than or equal to 
hierarchy, or a minimum, lesser than or equal 
to, hierarchy. Dealing with the verification of 
heaps is difficult because we have to make a 
distinction in permissions given to particular 
parts of different memory chunks rather than 
objects in the same memory chunk. Users can 
make a distinction about the heap’s memory 
chunks with the points-to-predicate operator 
“↦” and the separating conjunction operator 
“∗”. The arrow operator asserts both ownership 
of a heap location and its value, e.g. x.f ↦2 states 
that the location x.f—accessing the value of 
field f in structure x—is uniquely owned and 
contains the value 2. Further, the separating 
conjunction works similarly to the logical and, 
but it’s extended to ensure that two chunks of 
memory—sub-heaps—are distinct in memory. 
For example, x.f ↦2 ∗ y.f ↦2 states that the heap 
locations x.f and y.f are distinct (i.e. x ≠ y), are 
each owned, and each contain the value 2. This 
is useful for verification techniques at runtime 
as it will allow the tool to make a distinction 
between sub-heaps that would otherwise be 
indistinguishable because they share the same 
field value. 

A few years later, Smans (2009) presented 
implicit dynamic frames (IDF) as an alternative 
to separation logic, which asserts ownership 
of a heap location and its value separately. 
Moreover, ownership is ensured through the use 
of accessibility predicates, e.g. acc(x.f). Then, 
acc(x.f.) ∗ x.f == 2 states that x.f is uniquely 
owned and contains the value 2. Parkinson 
and Bierman (2009) and Smans et al. (2009) 
extended separation logic and IDF respectively 
to support recursive abstract predicates and thus 
recursive heap data structures—trees, lists, 
graphs, etc. Abstract predicates can be thought 
of as pure boolean functions. For example, we 
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consider the following predicate, which specifies 
that a list is acyclic: 

predicate acyclic(Node root) = root == null ? true 
: acc(root.val) ∗ acc(root.next) ∗ acyclic(root.
next). 

Acyclic recursively generates accessibility predi-
cates for each node in a list, and joins the pred-
icates with the separating conjunction. Thus, 
acyclic(l) simple denotes that all heap locations 
in list l are distinct—l is acyclic—providing re-
cursive behavior. 

Partial—imprecise—specifications contain in-
complete static information, which are marked 
with a question mark “?”, e.g. ? ∗ x.f == 2 where 
x.f == 2 is the static part. Empty specifications 
are completely imprecise, e.g. ? or ? ∗ true. Then, 
during static verification, imprecise specifica-
tions are statically strengthened (in non-contra-
dictory ways) to support proof goals. Wherever 
strengthening occurs, dynamic assertions are 
inserted to preserve soundness and complete 
verification. Bader et al.’s (2018) approach of 
Gradual Verification smoothly supports the 
spectrum between static and dynamic verifica-
tion via the previously mentioned gradual guar-
antee, conservative extension, and pay-as-you-go 
properties. A gradual verifier is a conservative 
extension of a static verifier if the two verifiers 
coincide on fully-precise programs. It also ex-
hibits a pay-as-you-go cost model when users 
are rewarded with increased static correctness 
guarantees and decreased dynamic checking, as 
specifications are refined. Gradual C0 exhibits 
a static verifier that supports implicit dynamic 
frames and abstract predicates. The static veri-
fier is extended with gradual formulas that sup-
port the ? operator. The entire static verifier is 
then lifted—all imprecise states are optimistical-
ly processed for later dynamic checking. Wise et 
al. (2020) proved that their system is sound, is 
a conservative extension of their static verifier, 
and adheres to the gradual guarantee. Howev-
er, we currently have no lightweight techniques 
to verify the soundness of the implementation 
of Gradual C0, even if we have reassurance the 

theory is correct. We propose a lightweight tech-
nique to incrementally verify the soundness of 
Gradual C0’s implementation and adhere to not 
just the gradual guarantee, but also a soundness 
property in regards to Gradual C0 emitting cor-
rect dynamic checks.

Introduction

Gradual Verifier Architecture
The following example program shows an over-
view of the Gradual C0 pipeline:

This program emulates a machine to withdraw 
money from a bank account. We want to make 
sure that the bank account has enough money to 
withdraw from, never go negative. Line 2 imple-
ments how side-effects are reasoned about, using 
Implicit Dynamic Frames (IDF). Access to mem-
ory locations is specified using acc(object-
field). In line 7, program states are represented 
by the verifier as formulas in a resource logic. 
Static information at the end of withdrawFee 
includes the account balance, account balance 
being greater or equal than zero, and the ac-
count balance equaling the old account balance 
minus five. In line 10 we have our first notation 
exclusive of Gradual Verification, ?, which al-
lows the verifier to assume anything necessary 
to complete proofs. The assumption made in 
order to satisfy the precondition of the method 
is that the account balance is greater than five. 
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Finally, in line 17, we have that wherever 
specifications are strengthened by the verifier, 
dynamic checks are inserted into the compiled 
program to ensure proper behavior at runtime, 
therefore here the verifier asserts that the 
account balance is greater than five.

Gradual C0 addresses new technical challenges 
in gradual verification: Gradual C0’s symbolic 
execution algorithm is responsible for statically 
verifying programs with imprecise specifications 
and producing minimally sufficient run-
time checks for soundness. Achieving these 
goals with symbolic execution is nuanced. 
In particular, Gradual C0 tracks the branch 
conditions created by program statements and 
specifications to produce run-time checks for 
corresponding execution paths. At run time, 
branch conditions are assigned to variables at 
the branch point that introduced them, which 
are then used to coordinate the successive 
checks as required. Further, Gradual C0 creates 
run-time checks by translating symbolic 
expressions into specifications—reversing the 
symbolic execution process by DiVincenzo et 
al. (2022). The run-time checks produced by 
Gradual C0 contain branch conditions, simple 
logical expressions, accessibility predicates, 
separating conjunctions, and predicates. Each 
of these constructs are specially translated into 
source code that can be executed at run-time for 
dynamic verification. Logical expressions are 
turned into assertions. Accessibility predicates 
and separating conjunctions are checked by 
tracking and updating a set of owned heap 
locations. Finally, predicates are translated into 
recursive boolean functions. This is where a lot 
of soundness bugs in Gradual C0 originate, by 
not correctly tracking the set of owned heap 
locations and losing information at run-time. 

For example, the verifier experienced a bug 
in regards to the nature of managing heap 
permissions demonstrates that an arbitrary 
method runs when it should not. We assume 
that a method assign assigns the value at an 
address x to be 1. This method is very simple, 
therefore a user might decide to define an 

imprecise predicate, imprecise() = ?, such 
that the precondition for the method is left up 
to dynamic verification. The postcondition 
just ensures true, and we unfold (expanding 
the abstract predicate to give permission into 
its body) the imprecise postcondition right 
before the assignment. If we want to then call 
the method by folding (repacking body) the 
predicate imprecise(), allocating memory 
for x, and declaring x to be 0, when we call 
the method and assert the postcondition 
that x = 0, the program should error. We 
already defined in the method for the address 
value to be 1, therefore asserting the return 
value to be 0 because we manually allocated 
the address to 0 manually should not change 
anything. However, the presence of imprecision 
allowed for the program to successfully verify 
in Gradual C0. If we denote impreciseness 
to represent all heap conditions, the verifier 
assumed that the permissions represented by 
iso-recursive predicates won’t change, but if they 
are imprecise, their equi-recursive unrolling 
includes permission to the entire heap. Their 
permissions will change even after they are 
folded. In essence, folding and unfolding a 
predicate that did nothing, which was set as the 
precondition for a benign assignment method, 
displayed unsoundness with the implementation 
of Gradual C0. Catching an issue such as this 
one requires heavy lifting when analyzing the 
formalization of Gradual Verification and 
provides several roadblocks to maintain a formal 
methods approach to verify Gradual C0, namely 
the uncertainty on whether to change the actual 
semantics of Gradual Verification or utilize the 
front-end to hack a solution in Gradual C0.

Gradual C0 has two major subsystems: 1) the 
gradual verification pipeline and 2) the C0 
pipeline. The gradual verification pipeline is 
responsible for statically verifying C0 programs 
and producing run-time checks for soundness. 
First, a C0 program is translated into a 
Gradual Viper (an extension of the Verification 
Infrastructure for Permission-based Reasoning 
language) program by Gradual C0’s frontend 
module, GVC0. Next, the Gradual Viper 
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module uses a symbolic execution approach that 
handles imprecise formulas to statically verify 
the Gradual Viper program (Viper comprises 
a novel intermediate verification language). 
Wherever imprecise formulas are strengthened 
in support of proofs, Gradual Viper creates run-
time checks in its language to ensure soundness. 
Finally, GVC0 takes those run-time checks and 
produces a C0 program from them, in addition 
to the original C0 program. The C0 pipeline 
takes this C0 program and feeds it to the C0 
compiler, CC0, which executes the program.

An example C0 program implementing logic 
for a bank account is shown in Figure 3. The 
monthEnd method uses the withdraw method 
to remove 5 units from the account when its 
balance is less than or equal to 100. Gradual 
specifications partially define the behavior of 
both monthEnd and withdraw. For example, 
the account balance must be a positive value for a 
call to withdraw to be valid. The postcondition 
of withdraw is unspecified as indicated
by ?. A ? in the specifications indicates 
imprecision, allowing the verifier to 
optimistically assume information, such as 
access to the balance field, where necessary.

The C0 program is converted to an intermediate 
representation (IR), that targets both C0 source 
output and Viper’s intermediate language, Silver. 
For gradual verification, we need to both convert 
the semantics of the C0 program into Silver and 
insert verifier-provided dynamic checks into 
the program before compilation. Intermediate 
values (such as complex expressions in a method 
call’s arguments) may need to be verified at 
run-time, and previous values may need to be 
examined to determine if a check is necessary 
at run-time. To meet these requirements, the 
C0 program’s IR is transformed to remove re-
assignments, similar to single-static-assignment 
(SSA) transformations.

Following this transformation, the IR is 
translated into Silver, which is further translated 
into a logical formula representation used by 
Silicon Schwerhoff (2016), the verification 

engine for Viper. During optimistic static 
verification, the verifier generates run-time 
checks wherever an optimistic assumption 
takes place. Where possible, checks are avoided 
using static information. Further, some checks 
are only required for specific execution paths 
through the program; path information is 
attached to these checks. All checks are emitted 
to the frontend, which translates and injects 
them into the C0 IR.

Figure 4 shows a simple dynamic check. The 
withdraw call in Figure 3 elicits this check 
before the termination of monthEnd in order 
to ensure a valid account balance, but only for 
the path denoted by the conditional branch. 
Wise et al. (2020) extended gradual verification 
to support heap-allocated data structures 
using implicit dynamic frames (IDF) (Smans 
et al., 2009). In addition, Viper uses IDF in 
its implementation of static verification. IDF 
imposes constraints on the accessibility of fields 
in heap-allocated data structures. Since gradual 
verification may require dynamic verification 
of specifications, gradual verification using 
IDF must verify field accessibility at run time. 
To implement this, an additional argument is 
added to each method. This argument is used 
to specify the fields accessible by the method. 
When calling a fully specified method, the caller 
passes only the permissions specified in the 
callee’s preconditions. However, for gradually 
specified methods, all of the caller’s permissions 
are passed. A dynamic check for field access 
asserts that this set contains a tuple of the field 
and its parent struct reference. This allows 
the side-effects of fully specified methods to be 
known during static verification even if they call 
gradually specified methods where side-effects 
are not specified.

Approach

Lightweight Verification
While empirically evaluating Gradual C0's 
performance in DiVincenzo et al. (2022), Gradual 
C0 was used to verify thousands of partial 
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specifications that are correct and approximate 
the gradual guarantee. A number of bugs were 
caught and fixed by hand, in which Gradual 
C0's design was implemented incorrectly. To 
complement the aforementioned evaluation 
that only looks at correct specifications and 
programs, we introduce a property based testing 
(PBT) pipeline that empirically evaluates the 
correctness of Gradual C0's implementation 
through incorrect programs and specifications. 
It has been shown that capturing the truthiness 
of a property's results with lightweight 
methods provides good coverage for finding 
implementation bugs (Claessen & Hughes, 
2000). In Gradual C0, the truthiness for all 
programs consists of a pair of outputs: dynamic 
and gradual verification output message given 
by Gradual C0. Failed equivalence between this 
pair of outputs informs us of bugs in Gradual 
C0's implementation that do not break the 
gradual guarantee and would not have been 
caught otherwise.  

Unlike classical tools for property based testing, 
we are not generating input for programs, 
rather generating programs themselves to input 
into the pipeline. We implement a three-stage 
pipeline framework that sequentially gradually 
verifies a program, stores the output message, 
either a success or a failure message, followed by 
pure dynamic verification of the same program, 
and compares its output to the previously stored 
gradual output. The three stages are composed 
of a reference model language—Gradual C0's 
specification language—an input generator—
test suite of examples that are not supposed to 
verify correctly which we randomly permute to 
test on—and a checker—compares the output 
from Gradual C0 and Dynamic C0 (Figure 1). 
The checker establishes Dynamic C0 as the 
ground truth, expecting either an error or a pass 
from Gradual C0 if Dynamic C0's output is a 
pass, but they should never differ if Dynamic 
C0's output is an error.    

We choose Dynamic C0 as the ground truth 
because Gradual C0 already has an empirical 
reassurance of static soundness in the verifier 

thanks to our benchmarking system, which 
remedies the issue with Dynamic C0 being 
complete but not sound: we don’t guarantee that 
a program satisfies a specification if it passes. 
We evaluate the previously mentioned 50-90% 
efficiency of the tool by emulating Takikawa 
et al., (2016)’s performance lattice method, a 
method to measure run-time cost of gradual 
typing by testing various configurations of 
the typed and untyped code, but with relaxed 
specifications instead. Our benchmark is made 
up of four fully statically verified algorithms–
namely BST (Binary Search Tree), AVL 
(Adelson-Velsky and Landis BST),  Composite, 
Linked list insertion. If the benchmarking is 
a success, then we have a pseudo-empirical 
reassurance of our static verifier because we 
have passed a fully-precise program. However, 
dynamic checks while relaxing specifications 
could be unsound. We therefore use Dynamic 
C0 as the ground truth, by comparing how the 
pure dynamic verifier asserts dynamic checks 
with no static information (it should always emit 
them correctly, although the program will be 
very slow to verify), against Gradual C0 which is 
asserting dynamic checks given optimistic static 
information.

The input generator is made up of a dozen 
methods that come from Gradual C0's 
benchmark test suite. The methods from each 
test are changed to have incorrect specifications 
and implementations that do not obey each 
other. The tests in the input generator also 
have to maintain certain ways of stating 
specifications. To prevent a trivial failure of the 
static verifier in Gradual C0, programs must 
avoid specifying preconditions and fold/unfolds 
(explicit statements to control the availability of 
predicate information) that won't be met while 
running. These folds control the availability of 
predicate information. Verification tools cannot 
automatically deal with recursive information 
in specifications. If a recursive function is 
referenced in a precondition, for example, the 
programmer must explicitly fold/unfold the 
recursive information, similar to specifying loop 
invariants. These folds/unfolds are considered 
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an iso-recursive interpretation of predicates. 
Because static verifiers rely on iso-recursive 
reasoning, the static verification step in Gradual 
C0 will trivially fail with the presence of unmet 
predicate information.

Approach

Inputting to the Input Generator
Any contradictory output regarding the success 
of Gradual C0 and Dynamic C0’s output will 
result in a reduction of the code to find which 
method is resulting in the error, informing us 
where the bug could be in Gradual C0’s imple-
mentation. For example, the lightweight tech-
nique known as QuickCheck attempts to write 
assertions about logical properties that a func-
tion should fulfill, and attempts to generate a 
test case that falsifies such assertions, our reduc-
tion follows the same pattern. Once such a test 
case is found, QC tries to reduce it to a minimal 
failing subset by removing or simplifying input 
data that are unneeded to make the test fail. Ide-
ally, however, a fully fuzzy tool would auto gen-
erate random input to empirically test sound-
ness. Our current tool does not have a way to 
generate Gradual C0 programs that contradict 
in specification and implementation. Instead, 
we take an approach closer to mutation testing, 
in which we slightly modify individual methods 
in our three of our four benchmarking algo-
rithms. We then have a lower level of proper-
ty-based testing in which we generate inputs for 
these methods in association to whatever struc-
ture was changed, if we encounter an arithme-
tic change we have integer literals. These slight 
modifications search for basic operators in the 
core logic, e.g. greater than, addition, loop ter-
mination, and replaces them with the dual oper-
ation, e.g. lesser than, subtraction, different loop 
termination value, respectively. 

We can strengthen the exhaustiveness by in-
cluding examples which have been caught by 
hand in the past, as shown in Figure 2. This ex-
ample begins with an append method with no 
permissions, and in an imprecise state. When 

we encounter the while loop on line 10, we cor-
rectly emit a check for asserting that we have ac-
cess to n->next. The first iteration of the loop 
is fine, because we have checked that we have 
access to n->next. Before we begin the next it-
eration, though, we should check again that we 
have access to n->next (since we might have 
lost it on the current iteration). If we don't have 
access, the program shouldn't be able to evalu-
ate the loop condition, and should crash. Grad-
ual C0 did not crash at the time of the bug being 
found, because it was unsound. This was due to 
an issue on permissions given to the optimistic 
heap at a certain time in compilation. Our tool 
was able to make a distinction between Gradu-
al C0’s output and Dynamic C0’s resulting error 
and immediately identify the bug.

Tool Analysis

To test the correctness of our tool, we 
retrospectively find bugs through Gradual C0's 
issue tracker on GitHub, and run the tool on our 
test suite. In addition to previously mentioned 
programs, our test suite is expanded to include 
tests that implement failing implementations 
from each issue in the issue tracker. A 
particularly interesting and significant issue 
was originally caught with the formalization 
of Gradual Verification from Wise et al. (2020) 
regarding the internal output of Gradual C0 after 
the behavior had been formalized—Footprint 
Splitting. In this issue, Gradual C0 was not 
removing information from the optimistic heap, 
framed by an imprecise specification, when 
it should. Permissions would not be tracked 
inside precise methods that call imprecise 
methods or methods with internal precision. 
In our input generator, the set of examples that 
trigger this issue come from the binary search 
tree benchmark. This example fails the property 
because Gradual C0's output would pass at the 
creation of the imprecise predicate, treeRemove, 
to delete a binary search tree. This predicate is 
called in the postcondition of the tree removal 
function, and recreating run-time permissions 
after the function is called is incorrect because 
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it causes an accessibility predicate to be missing. 
Our tool catches this failing property and 
returns Dynamic C0's error.  			 

We can further understand the usefulness of 
our tool by running our test suite on a point 
of Gradual C0's GitHub commit history. Table 
1 shows us which issues were caught by our 
tool. Our entire test suite ran at a rollback of 
Gradual C0 to the dates listed under the Commit 
found column and we specify which example 
in the suite found the bug if any. The custom 
loop example on April 1st is shown in Figure 
2. This analysis helps to prove the efficacy of 
PBT in Gradual C0, capturing most bugs. The 
only issues that were not caught were due to 
a benchmark test that was not implemented 
in our test suite, the AVL benchmark. A more 
exhaustive test suite that implements this test 
could have identified all 7 soundness bugs.

Conclusion

Gradual Verification is a powerful tool that 
supports the relaxation of static specification 
without losing any information to create 
unsoundness issues. It leverages dynamic and 
static techniques and has been proven to have 
soundness guarantees. However, there are 
various bugs in the implementation of Gradual 
C0, the first gradual verification tool, that cannot 
currently be addressed with formal methods, 
due to a lack in consistency when bridging the 
formal semantics of Gradual Verification and 
non-theoretical hacks to solve implementation 
issues in Gradual C0. To combat this uncertainty, 
we develop a lightweight tool relying on Property 
Based Testing for finding implementation bugs 
in Gradual C0 that do not follow Gradual 
Verification’s formal design, instead opting 
for front-end based solutions. However, there 
are still challenges that must be addressed to 
exhaust this lightweight method for a rigorous 
evaluation of new bugs with arbitrary programs. 
Currently, the test suite is implemented by hand 
by iterating through the benchmark examples 
which all pass the gradual guarantee. The new 

bugs that have been found are associated with 
this set of (exhaustive) examples and arbitrary 
programs might expose bugs which aren’t 
guaranteed to be caught with this tool. We know 
that testing is enhanced by the specifications 
that are written at the boundaries – they might 
even help with generating tests. Conversely, the 
dynamic verification part of our work is only 
useful if test cases cover the places where the 
assertions are.

This implementation has limited applicability 
due to the restrictive test suite. A promising 
approach to expand the domain of bugs caught by 
our tool relies on iterating through all examples 
in the benchmark test suite and breaking 
individual methods by generating random 
inputs that violate each method's specification. 
Nevertheless, we lay the groundwork for a 
consistent lightweight tool which is the first 
automated method for finding implementation 
bugs in Gradual C0.
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Figures/Tables

Figure 1. Checker Architecture

Figure 2. Custom loop example for issue 34

Figure 3. Bank account example of a gradually verified program in C0
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Figure 4. Runtime check example in Gradual C0

Table 1. Bugs caught with the PBT tool

Commits found Bugs and test that caught it Property failure caught
August 16, 2022 Issue 38: AVL (Not implemented) No
August 29, 2022 Issue 46: AVL (Not implemented) No
May 13, 2022 Issue 27: BST Yes
May 12, 2022 Issue 25: BST Yes
August 15, 2022 Issue 44: AVOL (Not implemented) No
April 1, 2022 Issue 34: Custom loop example Yes
March 9, 2022 Issue 24: List insertion Yes
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