
Introduction

Motivation
Historically, we are familiar with a family of
formal verification techniques as providing
rigorous approaches to ensure the correctness
of computer programs, in particular static
verification. These techniques require the
programmer to fully specify a program’s
predicted behavior to give formal assurance
that the implementation will abide by what
the programmer has in mind: a specification.
Unfortunately, this approach does not support
incrementality, as it requires the previously
mentioned full specification to support quality
code coverage. Further, static verification tools
cannot provide verification feedback on any
partial specifications written on the way to
complete static specification. This means that if a
user has a program and they only want to verify

a particular method, they have to pedantically
specify the entire method’s annotations for the
static verifier to receive with full coverage. This
includes completely specifying loop invariants,
preconditions, postconditions, etc., none of
which can be at the discretion of the verifier,
as it does not have enough information to
make inferences. On the other hand, dynamic
verification techniques focus at asserting specific
test cases based on inputs given by a user at run-
time. This technique avoids having to specify all
information in a program, albeit it experiences
massive overhead in regards to run-time costs
that limit its practicality. In addition, dynamic
verification techniques do not provide full code
coverage and are meant to work in tandem with
formal verification techniques.

Bader, Aldrich, and Tanter (2018), introduces
the idea of gradual verification, which soundly

Abstract

Evaluating Soundness of a Gradual Verifier
with Property Based Testing

By Jan-Paul Ramos-Dávila
Department of Computer Science, College of Computing and Information Science

Gradual verification supports partial specifications by soundly applying static checking where
possible and dynamic checking when necessary. This approach supports incrementality and
provides a formal guarantee of verifiability. The first gradual verifier, Gradual C0, supports
programs that manipulate recursive, mutable data structures on the heap and minimizes dynamic
checks with statically available information. The design of Gradual C0 has been formally proven
sound; however, this guarantee does not hold for its implementation.	

In this paper, we introduce a lightweight approach to testing the soundness of Gradual C0's
implementation. This approach uses Property Based Testing to empirically evaluate soundness by
establishing a truthiness property of equivalence. Our approach verifies a test suite of incorrectly
written programs and specifications with both Gradual C0 and a fully dynamic verifier for C0,
and then asserts an equivalence between the results of the two verifiers using the dynamic verifier
as ground truth. Any inconsistency between the results indicates a problem in Gradual C0's
implementation. We also show in this paper, as a proof of concept, that this lightweight approach
to testing Gradual C0's soundness caught a number of significant implementation bugs from
Gradual C0's issue tracker in GitHub. A number of these bugs were only previously caught by
human inspections of internal output of the tool. An automated generator for the test suite is our
next research step to increase the rigor of our evaluation and catch new bugs.

SPRING 2023 | 17
This work is licensed under CC BY 4.0.
To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/

combines both static and dynamic verification
techniques to support the incremental specifi-
cation and verification of programs. Inspired by
gradual typing (Garcia et al. 2016; Siek & Taha,
2006; Siek & Taha, 2007), with gradual verifi-
cation the programmer gains control over the
trade-offs between static and dynamic check-
ing by way of partial specifications, allowing the
behavior of unspecified components to be ver-
ified at run-time. Wise et al. (2020) introduces
the theory of gradual verification for programs
that manipulate recursive heap data structures
(trees, graphs, lists, etc.). Wise et al. proved such
a gradual verification system sound, and showed
its adherence to the gradual guarantee proper-
ty – relaxing specifications does not introduce
new static or dynamic verification errors, if it
is sound at full static specifications, then it is
sound at the relaxation.

DiVincenzo et al. (2022) introduces the design
and implementation of Gradual C0, the first
gradual verifier for recursive heap data structures
inspired by Wise et al.'s foundational theory. It
is an extension of the pedagogical C0 language
used by Carnegie Mellon University to teach the
fundamentals of dynamic verification with a
subset of C that supports dynamic specifications,
albeit it lacks memory allocation functions well
known in C, e.g. malloc. Gradual C0 is built
to minimize dynamic checking with statically
available information. DiVincenzo et al. (2022)
also shows in a performance study that Gradual
C0 reduces run-time overhead by 50-90% on
average compared to dynamic verification. This
shows that Gradual C0 is—conservatively—the
most optimal alternative to dynamic verifiers, as
the programmer can choose to statically specify
trivial control flow in their program and remove
significant overhead that would otherwise have
been computed at runtime. With this relaxation
in specifications, the user can also focus on
other parts of the program if they verify a more
complex aspect.

Introduction

Framework
Separation logic, introduced by Reynolds (2002),
supports static verification of the programs
that use the heap structure, a particular part
in memory with an ordering property which
establishes a maximum, greater than or equal to
hierarchy, or a minimum, lesser than or equal
to, hierarchy. Dealing with the verification of
heaps is difficult because we have to make a
distinction in permissions given to particular
parts of different memory chunks rather than
objects in the same memory chunk. Users can
make a distinction about the heap’s memory
chunks with the points-to-predicate operator
“↦” and the separating conjunction operator
“∗”. The arrow operator asserts both ownership
of a heap location and its value, e.g. x.f ↦2 states
that the location x.f—accessing the value of
field f in structure x—is uniquely owned and
contains the value 2. Further, the separating
conjunction works similarly to the logical and,
but it’s extended to ensure that two chunks of
memory—sub-heaps—are distinct in memory.
For example, x.f ↦2 ∗ y.f ↦2 states that the heap
locations x.f and y.f are distinct (i.e. x ≠ y), are
each owned, and each contain the value 2. This
is useful for verification techniques at runtime
as it will allow the tool to make a distinction
between sub-heaps that would otherwise be
indistinguishable because they share the same
field value.

A few years later, Smans (2009) presented
implicit dynamic frames (IDF) as an alternative
to separation logic, which asserts ownership
of a heap location and its value separately.
Moreover, ownership is ensured through the use
of accessibility predicates, e.g. acc(x.f). Then,
acc(x.f.) ∗ x.f == 2 states that x.f is uniquely
owned and contains the value 2. Parkinson
and Bierman (2009) and Smans et al. (2009)
extended separation logic and IDF respectively
to support recursive abstract predicates and thus
recursive heap data structures—trees, lists,
graphs, etc. Abstract predicates can be thought
of as pure boolean functions. For example, we

18 | The Cornell Undergraduate Research Journal

consider the following predicate, which specifies
that a list is acyclic:

predicate acyclic(Node root) = root == null ? true
: acc(root.val) ∗ acc(root.next) ∗ acyclic(root.
next).

Acyclic recursively generates accessibility predi-
cates for each node in a list, and joins the pred-
icates with the separating conjunction. Thus,
acyclic(l) simple denotes that all heap locations
in list l are distinct—l is acyclic—providing re-
cursive behavior.

Partial—imprecise—specifications contain in-
complete static information, which are marked
with a question mark “?”, e.g. ? ∗ x.f == 2 where
x.f == 2 is the static part. Empty specifications
are completely imprecise, e.g. ? or ? ∗ true. Then,
during static verification, imprecise specifica-
tions are statically strengthened (in non-contra-
dictory ways) to support proof goals. Wherever
strengthening occurs, dynamic assertions are
inserted to preserve soundness and complete
verification. Bader et al.’s (2018) approach of
Gradual Verification smoothly supports the
spectrum between static and dynamic verifica-
tion via the previously mentioned gradual guar-
antee, conservative extension, and pay-as-you-go
properties. A gradual verifier is a conservative
extension of a static verifier if the two verifiers
coincide on fully-precise programs. It also ex-
hibits a pay-as-you-go cost model when users
are rewarded with increased static correctness
guarantees and decreased dynamic checking, as
specifications are refined. Gradual C0 exhibits
a static verifier that supports implicit dynamic
frames and abstract predicates. The static veri-
fier is extended with gradual formulas that sup-
port the ? operator. The entire static verifier is
then lifted—all imprecise states are optimistical-
ly processed for later dynamic checking. Wise et
al. (2020) proved that their system is sound, is
a conservative extension of their static verifier,
and adheres to the gradual guarantee. Howev-
er, we currently have no lightweight techniques
to verify the soundness of the implementation
of Gradual C0, even if we have reassurance the

theory is correct. We propose a lightweight tech-
nique to incrementally verify the soundness of
Gradual C0’s implementation and adhere to not
just the gradual guarantee, but also a soundness
property in regards to Gradual C0 emitting cor-
rect dynamic checks.

Introduction

Gradual Verifier Architecture
The following example program shows an over-
view of the Gradual C0 pipeline:

This program emulates a machine to withdraw
money from a bank account. We want to make
sure that the bank account has enough money to
withdraw from, never go negative. Line 2 imple-
ments how side-effects are reasoned about, using
Implicit Dynamic Frames (IDF). Access to mem-
ory locations is specified using acc(object-
field). In line 7, program states are represented
by the verifier as formulas in a resource logic.
Static information at the end of withdrawFee
includes the account balance, account balance
being greater or equal than zero, and the ac-
count balance equaling the old account balance
minus five. In line 10 we have our first notation
exclusive of Gradual Verification, ?, which al-
lows the verifier to assume anything necessary
to complete proofs. The assumption made in
order to satisfy the precondition of the method
is that the account balance is greater than five.

SPRING 2023 | 19

Finally, in line 17, we have that wherever
specifications are strengthened by the verifier,
dynamic checks are inserted into the compiled
program to ensure proper behavior at runtime,
therefore here the verifier asserts that the
account balance is greater than five.

Gradual C0 addresses new technical challenges
in gradual verification: Gradual C0’s symbolic
execution algorithm is responsible for statically
verifying programs with imprecise specifications
and producing minimally sufficient run-
time checks for soundness. Achieving these
goals with symbolic execution is nuanced.
In particular, Gradual C0 tracks the branch
conditions created by program statements and
specifications to produce run-time checks for
corresponding execution paths. At run time,
branch conditions are assigned to variables at
the branch point that introduced them, which
are then used to coordinate the successive
checks as required. Further, Gradual C0 creates
run-time checks by translating symbolic
expressions into specifications—reversing the
symbolic execution process by DiVincenzo et
al. (2022). The run-time checks produced by
Gradual C0 contain branch conditions, simple
logical expressions, accessibility predicates,
separating conjunctions, and predicates. Each
of these constructs are specially translated into
source code that can be executed at run-time for
dynamic verification. Logical expressions are
turned into assertions. Accessibility predicates
and separating conjunctions are checked by
tracking and updating a set of owned heap
locations. Finally, predicates are translated into
recursive boolean functions. This is where a lot
of soundness bugs in Gradual C0 originate, by
not correctly tracking the set of owned heap
locations and losing information at run-time.

For example, the verifier experienced a bug
in regards to the nature of managing heap
permissions demonstrates that an arbitrary
method runs when it should not. We assume
that a method assign assigns the value at an
address x to be 1. This method is very simple,
therefore a user might decide to define an

imprecise predicate, imprecise() = ?, such
that the precondition for the method is left up
to dynamic verification. The postcondition
just ensures true, and we unfold (expanding
the abstract predicate to give permission into
its body) the imprecise postcondition right
before the assignment. If we want to then call
the method by folding (repacking body) the
predicate imprecise(), allocating memory
for x, and declaring x to be 0, when we call
the method and assert the postcondition
that x = 0, the program should error. We
already defined in the method for the address
value to be 1, therefore asserting the return
value to be 0 because we manually allocated
the address to 0 manually should not change
anything. However, the presence of imprecision
allowed for the program to successfully verify
in Gradual C0. If we denote impreciseness
to represent all heap conditions, the verifier
assumed that the permissions represented by
iso-recursive predicates won’t change, but if they
are imprecise, their equi-recursive unrolling
includes permission to the entire heap. Their
permissions will change even after they are
folded. In essence, folding and unfolding a
predicate that did nothing, which was set as the
precondition for a benign assignment method,
displayed unsoundness with the implementation
of Gradual C0. Catching an issue such as this
one requires heavy lifting when analyzing the
formalization of Gradual Verification and
provides several roadblocks to maintain a formal
methods approach to verify Gradual C0, namely
the uncertainty on whether to change the actual
semantics of Gradual Verification or utilize the
front-end to hack a solution in Gradual C0.

Gradual C0 has two major subsystems: 1) the
gradual verification pipeline and 2) the C0
pipeline. The gradual verification pipeline is
responsible for statically verifying C0 programs
and producing run-time checks for soundness.
First, a C0 program is translated into a
Gradual Viper (an extension of the Verification
Infrastructure for Permission-based Reasoning
language) program by Gradual C0’s frontend
module, GVC0. Next, the Gradual Viper

20 | The Cornell Undergraduate Research Journal

module uses a symbolic execution approach that
handles imprecise formulas to statically verify
the Gradual Viper program (Viper comprises
a novel intermediate verification language).
Wherever imprecise formulas are strengthened
in support of proofs, Gradual Viper creates run-
time checks in its language to ensure soundness.
Finally, GVC0 takes those run-time checks and
produces a C0 program from them, in addition
to the original C0 program. The C0 pipeline
takes this C0 program and feeds it to the C0
compiler, CC0, which executes the program.

An example C0 program implementing logic
for a bank account is shown in Figure 3. The
monthEnd method uses the withdraw method
to remove 5 units from the account when its
balance is less than or equal to 100. Gradual
specifications partially define the behavior of
both monthEnd and withdraw. For example,
the account balance must be a positive value for a
call to withdraw to be valid. The postcondition
of withdraw is unspecified as indicated
by ?. A ? in the specifications indicates
imprecision, allowing the verifier to
optimistically assume information, such as
access to the balance field, where necessary.

The C0 program is converted to an intermediate
representation (IR), that targets both C0 source
output and Viper’s intermediate language, Silver.
For gradual verification, we need to both convert
the semantics of the C0 program into Silver and
insert verifier-provided dynamic checks into
the program before compilation. Intermediate
values (such as complex expressions in a method
call’s arguments) may need to be verified at
run-time, and previous values may need to be
examined to determine if a check is necessary
at run-time. To meet these requirements, the
C0 program’s IR is transformed to remove re-
assignments, similar to single-static-assignment
(SSA) transformations.

Following this transformation, the IR is
translated into Silver, which is further translated
into a logical formula representation used by
Silicon Schwerhoff (2016), the verification

engine for Viper. During optimistic static
verification, the verifier generates run-time
checks wherever an optimistic assumption
takes place. Where possible, checks are avoided
using static information. Further, some checks
are only required for specific execution paths
through the program; path information is
attached to these checks. All checks are emitted
to the frontend, which translates and injects
them into the C0 IR.

Figure 4 shows a simple dynamic check. The
withdraw call in Figure 3 elicits this check
before the termination of monthEnd in order
to ensure a valid account balance, but only for
the path denoted by the conditional branch.
Wise et al. (2020) extended gradual verification
to support heap-allocated data structures
using implicit dynamic frames (IDF) (Smans
et al., 2009). In addition, Viper uses IDF in
its implementation of static verification. IDF
imposes constraints on the accessibility of fields
in heap-allocated data structures. Since gradual
verification may require dynamic verification
of specifications, gradual verification using
IDF must verify field accessibility at run time.
To implement this, an additional argument is
added to each method. This argument is used
to specify the fields accessible by the method.
When calling a fully specified method, the caller
passes only the permissions specified in the
callee’s preconditions. However, for gradually
specified methods, all of the caller’s permissions
are passed. A dynamic check for field access
asserts that this set contains a tuple of the field
and its parent struct reference. This allows
the side-effects of fully specified methods to be
known during static verification even if they call
gradually specified methods where side-effects
are not specified.

Approach

Lightweight Verification
While empirically evaluating Gradual C0's
performance in DiVincenzo et al. (2022), Gradual
C0 was used to verify thousands of partial

SPRING 2023 | 21

specifications that are correct and approximate
the gradual guarantee. A number of bugs were
caught and fixed by hand, in which Gradual
C0's design was implemented incorrectly. To
complement the aforementioned evaluation
that only looks at correct specifications and
programs, we introduce a property based testing
(PBT) pipeline that empirically evaluates the
correctness of Gradual C0's implementation
through incorrect programs and specifications.
It has been shown that capturing the truthiness
of a property's results with lightweight
methods provides good coverage for finding
implementation bugs (Claessen & Hughes,
2000). In Gradual C0, the truthiness for all
programs consists of a pair of outputs: dynamic
and gradual verification output message given
by Gradual C0. Failed equivalence between this
pair of outputs informs us of bugs in Gradual
C0's implementation that do not break the
gradual guarantee and would not have been
caught otherwise.

Unlike classical tools for property based testing,
we are not generating input for programs,
rather generating programs themselves to input
into the pipeline. We implement a three-stage
pipeline framework that sequentially gradually
verifies a program, stores the output message,
either a success or a failure message, followed by
pure dynamic verification of the same program,
and compares its output to the previously stored
gradual output. The three stages are composed
of a reference model language—Gradual C0's
specification language—an input generator—
test suite of examples that are not supposed to
verify correctly which we randomly permute to
test on—and a checker—compares the output
from Gradual C0 and Dynamic C0 (Figure 1).
The checker establishes Dynamic C0 as the
ground truth, expecting either an error or a pass
from Gradual C0 if Dynamic C0's output is a
pass, but they should never differ if Dynamic
C0's output is an error.

We choose Dynamic C0 as the ground truth
because Gradual C0 already has an empirical
reassurance of static soundness in the verifier

thanks to our benchmarking system, which
remedies the issue with Dynamic C0 being
complete but not sound: we don’t guarantee that
a program satisfies a specification if it passes.
We evaluate the previously mentioned 50-90%
efficiency of the tool by emulating Takikawa
et al., (2016)’s performance lattice method, a
method to measure run-time cost of gradual
typing by testing various configurations of
the typed and untyped code, but with relaxed
specifications instead. Our benchmark is made
up of four fully statically verified algorithms–
namely BST (Binary Search Tree), AVL
(Adelson-Velsky and Landis BST), Composite,
Linked list insertion. If the benchmarking is
a success, then we have a pseudo-empirical
reassurance of our static verifier because we
have passed a fully-precise program. However,
dynamic checks while relaxing specifications
could be unsound. We therefore use Dynamic
C0 as the ground truth, by comparing how the
pure dynamic verifier asserts dynamic checks
with no static information (it should always emit
them correctly, although the program will be
very slow to verify), against Gradual C0 which is
asserting dynamic checks given optimistic static
information.

The input generator is made up of a dozen
methods that come from Gradual C0's
benchmark test suite. The methods from each
test are changed to have incorrect specifications
and implementations that do not obey each
other. The tests in the input generator also
have to maintain certain ways of stating
specifications. To prevent a trivial failure of the
static verifier in Gradual C0, programs must
avoid specifying preconditions and fold/unfolds
(explicit statements to control the availability of
predicate information) that won't be met while
running. These folds control the availability of
predicate information. Verification tools cannot
automatically deal with recursive information
in specifications. If a recursive function is
referenced in a precondition, for example, the
programmer must explicitly fold/unfold the
recursive information, similar to specifying loop
invariants. These folds/unfolds are considered

22 | The Cornell Undergraduate Research Journal

an iso-recursive interpretation of predicates.
Because static verifiers rely on iso-recursive
reasoning, the static verification step in Gradual
C0 will trivially fail with the presence of unmet
predicate information.

Approach

Inputting to the Input Generator
Any contradictory output regarding the success
of Gradual C0 and Dynamic C0’s output will
result in a reduction of the code to find which
method is resulting in the error, informing us
where the bug could be in Gradual C0’s imple-
mentation. For example, the lightweight tech-
nique known as QuickCheck attempts to write
assertions about logical properties that a func-
tion should fulfill, and attempts to generate a
test case that falsifies such assertions, our reduc-
tion follows the same pattern. Once such a test
case is found, QC tries to reduce it to a minimal
failing subset by removing or simplifying input
data that are unneeded to make the test fail. Ide-
ally, however, a fully fuzzy tool would auto gen-
erate random input to empirically test sound-
ness. Our current tool does not have a way to
generate Gradual C0 programs that contradict
in specification and implementation. Instead,
we take an approach closer to mutation testing,
in which we slightly modify individual methods
in our three of our four benchmarking algo-
rithms. We then have a lower level of proper-
ty-based testing in which we generate inputs for
these methods in association to whatever struc-
ture was changed, if we encounter an arithme-
tic change we have integer literals. These slight
modifications search for basic operators in the
core logic, e.g. greater than, addition, loop ter-
mination, and replaces them with the dual oper-
ation, e.g. lesser than, subtraction, different loop
termination value, respectively.

We can strengthen the exhaustiveness by in-
cluding examples which have been caught by
hand in the past, as shown in Figure 2. This ex-
ample begins with an append method with no
permissions, and in an imprecise state. When

we encounter the while loop on line 10, we cor-
rectly emit a check for asserting that we have ac-
cess to n->next. The first iteration of the loop
is fine, because we have checked that we have
access to n->next. Before we begin the next it-
eration, though, we should check again that we
have access to n->next (since we might have
lost it on the current iteration). If we don't have
access, the program shouldn't be able to evalu-
ate the loop condition, and should crash. Grad-
ual C0 did not crash at the time of the bug being
found, because it was unsound. This was due to
an issue on permissions given to the optimistic
heap at a certain time in compilation. Our tool
was able to make a distinction between Gradu-
al C0’s output and Dynamic C0’s resulting error
and immediately identify the bug.

Tool Analysis

To test the correctness of our tool, we
retrospectively find bugs through Gradual C0's
issue tracker on GitHub, and run the tool on our
test suite. In addition to previously mentioned
programs, our test suite is expanded to include
tests that implement failing implementations
from each issue in the issue tracker. A
particularly interesting and significant issue
was originally caught with the formalization
of Gradual Verification from Wise et al. (2020)
regarding the internal output of Gradual C0 after
the behavior had been formalized—Footprint
Splitting. In this issue, Gradual C0 was not
removing information from the optimistic heap,
framed by an imprecise specification, when
it should. Permissions would not be tracked
inside precise methods that call imprecise
methods or methods with internal precision.
In our input generator, the set of examples that
trigger this issue come from the binary search
tree benchmark. This example fails the property
because Gradual C0's output would pass at the
creation of the imprecise predicate, treeRemove,
to delete a binary search tree. This predicate is
called in the postcondition of the tree removal
function, and recreating run-time permissions
after the function is called is incorrect because

SPRING 2023 | 23

it causes an accessibility predicate to be missing.
Our tool catches this failing property and
returns Dynamic C0's error. 			

We can further understand the usefulness of
our tool by running our test suite on a point
of Gradual C0's GitHub commit history. Table
1 shows us which issues were caught by our
tool. Our entire test suite ran at a rollback of
Gradual C0 to the dates listed under the Commit
found column and we specify which example
in the suite found the bug if any. The custom
loop example on April 1st is shown in Figure
2. This analysis helps to prove the efficacy of
PBT in Gradual C0, capturing most bugs. The
only issues that were not caught were due to
a benchmark test that was not implemented
in our test suite, the AVL benchmark. A more
exhaustive test suite that implements this test
could have identified all 7 soundness bugs.

Conclusion

Gradual Verification is a powerful tool that
supports the relaxation of static specification
without losing any information to create
unsoundness issues. It leverages dynamic and
static techniques and has been proven to have
soundness guarantees. However, there are
various bugs in the implementation of Gradual
C0, the first gradual verification tool, that cannot
currently be addressed with formal methods,
due to a lack in consistency when bridging the
formal semantics of Gradual Verification and
non-theoretical hacks to solve implementation
issues in Gradual C0. To combat this uncertainty,
we develop a lightweight tool relying on Property
Based Testing for finding implementation bugs
in Gradual C0 that do not follow Gradual
Verification’s formal design, instead opting
for front-end based solutions. However, there
are still challenges that must be addressed to
exhaust this lightweight method for a rigorous
evaluation of new bugs with arbitrary programs.
Currently, the test suite is implemented by hand
by iterating through the benchmark examples
which all pass the gradual guarantee. The new

bugs that have been found are associated with
this set of (exhaustive) examples and arbitrary
programs might expose bugs which aren’t
guaranteed to be caught with this tool. We know
that testing is enhanced by the specifications
that are written at the boundaries – they might
even help with generating tests. Conversely, the
dynamic verification part of our work is only
useful if test cases cover the places where the
assertions are.

This implementation has limited applicability
due to the restrictive test suite. A promising
approach to expand the domain of bugs caught by
our tool relies on iterating through all examples
in the benchmark test suite and breaking
individual methods by generating random
inputs that violate each method's specification.
Nevertheless, we lay the groundwork for a
consistent lightweight tool which is the first
automated method for finding implementation
bugs in Gradual C0.

24 | The Cornell Undergraduate Research Journal

Figures/Tables

Figure 1. Checker Architecture

Figure 2. Custom loop example for issue 34

Figure 3. Bank account example of a gradually verified program in C0

SPRING 2023 | 25

Figure 4. Runtime check example in Gradual C0

Table 1. Bugs caught with the PBT tool

Commits found Bugs and test that caught it Property failure caught
August 16, 2022 Issue 38: AVL (Not implemented) No
August 29, 2022 Issue 46: AVL (Not implemented) No
May 13, 2022 Issue 27: BST Yes
May 12, 2022 Issue 25: BST Yes
August 15, 2022 Issue 44: AVOL (Not implemented) No
April 1, 2022 Issue 34: Custom loop example Yes
March 9, 2022 Issue 24: List insertion Yes

References

Astrauskas, V., Müller, P., Poli, F., & Summers,
A. (2019). Leveraging Rust types for modular
specification and verification. Proceedings of the
ACM on Programming Languages 3, OOPSLA
(2019), 1–30. https://doi.org/10.1145/3360573

Bader, J., Aldrich, J., & Tanter, É. (2018). Grad-
ual Program Verification. In International Con-
ference on Verification, Model Checking, and
Abstract Interpretation. Springer, 25–46.

Claessen, K., & Hughes, J. (2000). QuickCheck:
A Lightweight Tool for Random Testing of Haskell
Programs. SIGPLAN Not. 35, 9 (sep 2000), 268–
279. https://doi.org/10.1145/357766.351266

DiVincenzo, J., McCormack, I., Gouni, H.,
Gorenburg, J., Zhang, M., Zimmerman, C., Sun-
shine, J., Tanter, É., & Aldrich, J. (2022). Gradu-
al C0: Symbolic Execution for Efficient Gradual
Verification. arXiv preprint arXiv:2210.02428
(2022).

Eilers, M. & Müller, P. (2018). Nagini: a static
verifier for Python. In International Conference
on Computer Aided Verification. Springer, 596–
603. https://doi.org/10.1007/978-3-319-96145-
3_33

Garcia, R., Clark, A., & Tanter, É. (2016). Ab-
stracting Gradual Typing. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages
(St. Petersburg, FL, USA) (POPL ’16). ACM,
New York, NY, USA, 429–442. https://doi.
org/10.1145/2837614.2837670

Parkinson, M., & Bierman, G. (2005). Separa-
tion logic and abstraction. In ACM SIGPLAN
Notices, Vol. 40. ACM, 247–258.

Reynolds, J. (2002). Separation logic: A logic for
shared mutable data structures. In Logic in Com-
puter Science, 2002. Proceedings. 17th Annual
IEEE Symposium on. IEEE, 55–74.

Schwerhoff, M. (2016). Advancing Automated,
Permission-Based Program Verification Using
Symbolic Execution. Ph.D. Dissertation. ETH Zu-
rich. https://doi.org/10.3929/ethz-a-010835519

Siek, J., & Taha, W. (2006). Gradual typing for
functional languages. In Scheme and Functional
Programming Workshop, Vol. 6. 81–92.

Siek, J., & Taha, W. (2007). Gradual typing for
objects. In European Conference on Object-Ori-
ented Programming. Springer, 2–27.

26 | The Cornell Undergraduate Research Journal

Smans, J., Jacobs, B., & Piessens, F. (2009). Im-
plicit dynamic frames: Combining dynamic
frames and separation logic. In European Con-
ference on Object-Oriented Programming.
Springer, 148–172. https://doi.org/10.1007/978-
3-642-03013-0_8

Takikawa, A., Feltey, D., Greenman, B.,
New, M. S., Vitek, J., & Felleisen, M. (2016).
Is sound gradual typing dead? ACM SIG-
PLAN Notices, 51(1), 456–468. https://doi.
org/10.1145/2914770.2837630

Wise J., Bader J., Wong, C., Aldirch, J., Tanter,
É., & Sunshine, J. (2020). Gradual verification of
recursive heap data structures

Wolf, F., Arquint, L., Clochard, M., Oortwijn, W.,
Pereira, J., & Müller, P. (2021). Gobra: Modular
Specification and Verification of Go Programs.
In International Conference on Computer Aid-
ed Verification. Springer, 367–379. https://doi.
org/10.1007/978-3-030-81685-8_17

SPRING 2023 | 27

