
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Formally Verified Software-Defined Delay Tolerant Networks
Jan-Paul Ramos-Dávila

Cornell University
Ithaca, NY, USA
jvr34@cornell.edu

Alwyn E. Goodloe
NASA Langley Research Center

Hampton, VA, USA
a.goodloe@nasa.gov

Abstract
Software-Defined Delay Tolerant Networks (SDDTNs) integrate
Software-DefinedNetworking (SDN) principles with Delay Tolerant
Networks (DTNs) to address challenges in high-latency and inter-
mittent connectivity environments. Formal verification of these
systems is challenging due to the complexity of protocols like the
Bundle Protocol (BP). We present NetQIR, a domain-specific in-
termediate representation targeting SDDTN algorithms. NetQIR
provides a formal framework that captures the behavior of P4 pro-
grams focusing on the Match-Action Pipeline (MAP) algorithm. We
formalize NetQIR’s semantics and type system in the Coq proof
assistant [2], deriving a sound, executable semantics that supports
verified execution of P4 programs targeting SDDTNs.

1 Introduction
Delay Tolerant Networks (DTNs) are designed for environments
with high latency or intermittent connectivity, where traditional
networking protocols fail [9, 14]. Software-Defined Networking
(SDN) decouples the control plane from the data plane, allowing
centralized management of network resources [11, 16]. Software-
Defined Delay Tolerant Networks (SDDTNs) integrate SDN princi-
ples with DTNs to manage large-scale networks, optimize resource
utilization, and adapt to changing environments [3, 4, 19].

Formal verification of SDDTNs is challenging due to the complex-
ity of protocols like the Bundle Protocol (BP) [1] and the dynamic
nature of DTNs. Verifying the correctness of network programs
written in languages like P4 [5] is non-trivial, given their rich type
systems and operational semantics. Existing tools like p4v [15] and
Vera [18] provide verification techniques but may not capture all
aspects required for SDDTNs.

To address these challenges, we introduce NetQIR, an inter-
mediate representation designed to facilitate type-preserving com-
pilation from P4 to a formally verified representation in Coq [2].
NetQIR allows us to leverage Coq’s powerful type system and proof
capabilities to ensure the correctness of SDDTN algorithms.

2 NetQIR: An Intermediate Representation
NetQIR captures essential constructs of P4 programs targeting the
Match-Action Pipeline (MAP), enabling formal reasoning about
their behavior within Coq. Similar to efforts like Petr4 [10] and
P4K [13], we focus on creating a formal semantics that can be
encoded in a proof assistant.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoqPL’25, January 25, 2025, Denver, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2.1 Syntax and Semantics
NetQIR includes constructs for expressions, statements, actions,
tables, and programs. The syntax mirrors P4 constructs while being
amenable to formalization.

1 (* NetQIR Expressions *)
2 Inductive expr : Type :=
3 | EVal : value → expr
4 | EVar : string → expr
5 | EBinOp : binop → expr → expr → expr
6 | EField : expr → string → expr.
7
8 (* NetQIR Statements *)
9 Inductive stmt : Type :=
10 | SAssign : string → expr → stmt
11 | SIf : expr → stmt → stmt → stmt
12 | SSeq : stmt → stmt → stmt
13 | SActionInvoke : string → list expr → stmt
14 | STableApply : string → stmt.

We define operational semantics using small-step semantics. The
state consists of a store mapping variables to values and a packet
representing headers and metadata. Our semantics are inspired by
prior formalizations of network languages [7, 8].

3 Formal Guarantees and Coq Formalization
We establish formal guarantees for NetQIR programs, providing
proofs of critical properties within Coq. Our approach ensures that
well-typed NetQIR programs behave correctly, similar to techniques
used in [12, 21].

3.1 Packet Delivery Correctness
We prove that well-typed NetQIR programs correctly process pack-
ets according to their specification.

Theorem 3.1 (Packet Delivery Correctness). If a NetQIR program
𝑝 is well-typed under context Γ, and executing 𝑝 from state (𝜎, 𝑝𝑘𝑡)
to (𝜎′, 𝑝𝑘𝑡 ′) yields 𝑝𝑘𝑡 ′, then 𝑝𝑘𝑡 ′ is correctly processed according to
𝑝’s semantics.

Proof Sketch. We proceed by induction on the structure of 𝑝 . For
each construct, we rely on the typing rules and operational se-
mantics to ensure that the transformations applied to the packet
are as specified. Assignments update the state correctly due to the
well-typedness of expressions. Conditional statements execute the
appropriate branch based on well-typed boolean expressions. Ac-
tion invocations and table applications apply well-typed actions
that modify the packet state as intended. The operational semantics
define how each construct modifies the packet, and the typing rules
prevent runtime errors, ensuring correct packet processing. □

3.2 Type Preservation
The type system guarantees that NetQIR programs are well-typed,
and the operational semantics maintain the type of expressions and
packets.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

CoqPL’25, January 25, 2025, Denver, USA Ramos-Dávila

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Theorem 3.2 (Type Preservation). If Γ ⊢ 𝑒 : 𝑡 and 𝑒 → 𝑒′ under
the operational semantics, then Γ ⊢ 𝑒′ : 𝑡 .

Proof. By induction on the evaluation steps of 𝑒 . Each reduction
stepmaintains the type, as operations are defined to be type-preserving,
and the typing rules ensure that operands and results have consis-
tent types. □

3.3 Flow Conservation
We prove that NetQIR programs conserve packet flow, meaning
they do not create or destroy packets arbitrarily.

Theorem 3.3 (Flow Conservation). A well-typed NetQIR program
𝑝 preserves the number of packets, except for explicit drop actions.

Proof. By examining the operational semantics, packets are only
modified during execution. The only way to remove a packet is
through a drop action, which is explicitly defined. The typing rules
prevent unauthorized packet creation, ensuring flow conservation.

□

4 Type-Preserving Compilation from P4 to
NetQIR

We establish a type-preserving compilation from P4 to NetQIR,
ensuring properties proven about NetQIR programs hold for the
original P4 programs. This approach aligns with methods used in
other verification frameworks [17, 20].

4.1 Compilation Function and Type Correspondence
We define a compilation function ⟦·⟧ mapping P4 constructs to
NetQIR constructs while preserving types.

Definition 4.1 (Compilation Function).

⟦action 𝑎(𝜏1 𝑥1, . . .){𝑠}⟧ = action 𝑎(𝜏 ′1 𝑥1, . . .){⟦𝑠⟧}

We establish type correspondence between P4 types 𝜏𝑖 and
NetQIR types 𝜏 ′

𝑖
, ensuring that the compilation preserves typing.

Theorem 4.2 (Type Preservation under Compilation). If a P4 pro-
gram 𝑝 is well-typed under context ΓP4, then its compilation ⟦𝑝⟧ is
well-typed under context ΓNetQIR, with corresponding types.

Proof. By structural induction on 𝑝 , mapping P4 types to NetQIR
types and aligning typing rules accordingly. This ensures that well-
typedness is preserved throughout the compilation. □

5 Example: Verified MAP Program
We demonstrate our approach with an IPv4 forwarding MAP pro-
gram.

5.1 P4 Program
The P4 program defines an action for IPv4 forwarding [6]:

1 action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
2 standard_metadata.egress_spec = port;
3 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
4 hdr.ethernet.dstAddr = dstAddr;
5 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
6 }

5.2 Compilation to NetQIR
We compile the P4 action to NetQIR:

1 Definition ipv4_forward :=
2 action "ipv4_forward" [("dstAddr", TBit 48); ("port", TBit 9)] {
3 SAssign "standard_metadata.egress_spec" (EVar "port");
4 SAssign "hdr.ethernet.srcAddr" (EField (EVar "hdr.ethernet") "

dstAddr");
5 SAssign "hdr.ethernet.dstAddr" (EVar "dstAddr");
6 SAssign "hdr.ipv4.ttl" (EBinOp Sub (EField (EVar "hdr.ipv4") "

ttl") (EVal (VBit 8 1)));
7 }.

5.3 Verification in Coq
In Coq, we verify that this action correctly updates packet headers
and metadata according to the IPv4 forwarding specification.

Theorem 5.1 (Correctness of ipv4_forward). For any packet 𝑝𝑘𝑡
with valid headers and parameters𝑑𝑠𝑡𝐴𝑑𝑑𝑟 , 𝑝𝑜𝑟𝑡 , executing ipv4_forward
updates 𝑝𝑘𝑡 such that:
𝑝𝑘𝑡 .𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎.𝑒𝑔𝑟𝑒𝑠𝑠_𝑠𝑝𝑒𝑐 = 𝑝𝑜𝑟𝑡

𝑝𝑘𝑡 .ℎ𝑑𝑟 .𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 .𝑠𝑟𝑐𝐴𝑑𝑑𝑟 = original 𝑝𝑘𝑡 .ℎ𝑑𝑟 .𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 .𝑑𝑠𝑡𝐴𝑑𝑑𝑟

𝑝𝑘𝑡 .ℎ𝑑𝑟 .𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡 .𝑑𝑠𝑡𝐴𝑑𝑑𝑟 = 𝑑𝑠𝑡𝐴𝑑𝑑𝑟

𝑝𝑘𝑡 .ℎ𝑑𝑟 .𝑖𝑝𝑣4.𝑡𝑡𝑙 = original 𝑝𝑘𝑡 .ℎ𝑑𝑟 .𝑖𝑝𝑣4.𝑡𝑡𝑙 − 1

Proof Sketch. By unfolding the action definition and applying the
operational semantics, we verify that each assignment updates the
packet state as specified. The typing rules ensure that operations
are well-typed, and the execution preserves the correctness of the
packet fields. □

P4 Program

JSON

Compiler

NetQIR

Coq Proofs

Verification Result

High-Level Code Intermediate Representation Formal Verification

Figure 1. Verification Pipeline from P4 to Coq

Figure 1 illustrates the verification pipeline: the P4 program is
serialized into JSON and passed through a type-preserving compiler
to produce NetQIR, our intermediate representation. NetQIR is then
used within the Coq proof assistant to formally verify the program’s
correctness. If the Coq proofs succeed, we obtain a verification
result confirming correctness.

6 Conclusion
We have presented NetQIR, an intermediate representation facili-
tating type-preserving compilation from P4 to Coq. By formalizing
NetQIR’s semantics and type system in Coq, we provide formal
guarantees about the behavior of SDDTNs. Our approach enables
the verification of critical network properties and contributes to
the reliability of networks in challenging environments.

References
[1] [n. d.]. Bundle Protocol Version 7. https://datatracker.ietf.org/doc/html/rfc9171.

Accessed: 2023-09-01.
[2] [n. d.]. The Coq Proof Assistant. https://coq.inria.fr/. Accessed: 2023-09-01.
[3] [n. d.]. Delay Tolerant Networking Research. https://www.sandia.gov/research/

research_foundations/information_science/dtn/. Accessed: 2023-09-01.

2

https://datatracker.ietf.org/doc/html/rfc9171
https://coq.inria.fr/
https://www.sandia.gov/research/research_foundations/information_science/dtn/
https://www.sandia.gov/research/research_foundations/information_science/dtn/


241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

Formally Verified Software-Defined Delay Tolerant Networks CoqPL’25, January 25, 2025, Denver, USA

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

[4] [n. d.]. Interplanetary Internet Project. https://www.ipnsig.org/. Accessed:
2023-09-01.

[5] [n. d.]. P4 Language Specification. https://p4.org/p4-spec/docs/P4-16-v1.2.3.html.
Accessed: 2023-09-01.

[6] [n. d.]. P4 Tutorial. https://github.com/p4lang/tutorials. Accessed: 2023-09-01.
[7] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic foundations
for networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM, 113–126.

[8] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Kar-
byshev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. 2014. VeriCon:
Towards verifying controller programs in software-defined networks. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 282–293.

[9] Scott Burleigh, Adrian Hooke, Leigh Torgerson, Kevin Fall, Vint Cerf, Bob Durst,
Keith Scott, and Howard Weiss. 2003. Delay-tolerant networking: an approach to
interplanetary internet. IEEE Communications Magazine 41, 6 (2003), 128–136.

[10] Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, et al. 2021. Petr4:
Formal foundations for P4 data planes. Proceedings of the ACM on Programming
Languages 5, POPL (2021), 1–32.

[11] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: A network programming
language. In Proceedings of the 16th ACM SIGPLAN International Conference on
Functional Programming. ACM, 279–291.

[12] Arjun Guha, Mark Reitblatt, and Nate Foster. 2013. Machine-verified network
controllers. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 483–494.

[13] Ali Kheradmand and Grigore Roşu. 2018. P4K: A formal semantics of P4 and
applications. In International Conference on Computer Aided Verification. Springer,
678–697.

[14] Anders Lindgren, Avri Doria, Elwyn Davies, and Samo Grasic. 2016. Probabilistic
routing protocol for intermittently connected networks. RFC 6693 (2016), 1–113.

[15] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert
Soulé, Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. 2018. p4v:
Practical verification for programmable data planes. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. ACM,
490–503.

[16] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. 2012.
NetCore: A language for high-level network policies. In Proceedings of the ACM
SIGCOMM 2012 Conference. ACM, 113–124.

[17] François Pottier. 2008. A capability calculus for concurrency and determinism.
In International Conference on Concurrency Theory. Springer, 282–296.

[18] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2018. Vera:
Verification of Regular Algorithms. In Proceedings of the 17th ACM Workshop on
Hot Topics in Networks. ACM, 30–36.

[19] Dominick Ta, Stephanie Booth, and Rachel Dudukovich. 2023. High Data Rate
Transport for Delay/Disruption Tolerant Networks: A Case Study. Technical Report.
NASA Glenn Research Center. https://ntrs.nasa.gov/api/citations/20220019062/
downloads/HDTNSimSPACOMMApril2023_Italy.pdf

[20] Mihai Tran, Ugo Fiore, and Francesco Palmieri. 2022. SEFL: A symbolic execution
framework for network functions. Computer Networks 207 (2022), 108805.

[21] Han Wang, Minlan Zhu, Hongyi Zeng, and Guofei Chen. 2014. NetASM: A
low-level language for programming network devices. In Proceedings of the third
workshop on Hot topics in software defined networking. ACM, 211–212.

3

https://www.ipnsig.org/
https://p4.org/p4-spec/docs/P4-16-v1.2.3.html
https://github.com/p4lang/tutorials
https://ntrs.nasa.gov/api/citations/20220019062/downloads/HDTNSimSPACOMMApril2023_Italy.pdf
https://ntrs.nasa.gov/api/citations/20220019062/downloads/HDTNSimSPACOMMApril2023_Italy.pdf

	Abstract
	1 Introduction
	2 NetQIR: An Intermediate Representation
	2.1 Syntax and Semantics

	3 Formal Guarantees and Coq Formalization
	3.1 Packet Delivery Correctness
	3.2 Type Preservation
	3.3 Flow Conservation

	4 Type-Preserving Compilation from P4 to NetQIR
	4.1 Compilation Function and Type Correspondence

	5 Example: Verified MAP Program
	5.1 P4 Program
	5.2 Compilation to NetQIR
	5.3 Verification in Coq

	6 Conclusion
	References

