
Sound Default-Typed Scheme
Jan-Paul Ramos-Dávila

Boston University

Boston, MA, USA

Abstract
We propose a new approach to typing Scheme programs

based on the observation that programmers often have strong

beliefs about the “normal” behavior of their code. Rather than

forcing a binary choice between static types and runtime

checks, we introduce default typing, where each program

point carries a plausibility-ranked set of types. The highest-

ranked type (rank 0) represents what the programmer be-

lieves will “almost always” be true, while higher ranks cap-

ture increasingly exceptional cases. By leveraging Racket’s

macro-extensible type system and SMT-based constraint

solving, we can verify whether a program type-checks using

only the default assumptions. Success yields efficient code

with no runtime overhead; failure produces a counterexam-

ple showing which assumptions are violated. We provide a

precise notion of conditional soundness: programs are guar-

anteed type-safe only when their default assumptions hold

at runtime.

CCS Concepts: • Software and its engineering→ Con-
straint and logic languages; Dynamic languages.

Keywords: Scheme, Racket, type systems, macros, Turnstile,

solver-aided languages, plausibility

1 Introduction
The Racket ecosystem has long served as a laboratory for

exploring the spectrum between static and dynamic typing.

From untyped Racket modules to contracts to Typed Racket,

each point in this spectrum offers different tradeoffs. Yet

none captures a fundamental aspect of how programmers

think: the distinction between what could happen and what

usually happens.

When a Scheme programmer writes (/ total count),
they’re not thinking “count might be zero.” They’re think-

ing “count won’t be zero in any reasonable execution.” This

assumption isn’t a proof or even a probabilistic statement:

it’s a belief about normal program behavior. Current type

systems force an uncomfortable choice: either prove count is

never zero (often impossible), add runtime checks (sacrificing

performance), or leave it dynamic (sacrificing safety).

We propose default typing, which formalizes these beliefs

using plausibility rankings. Each expression gets not one

type but a ranked sequence of types. Rank 0 represents the

“normal case” the programmer expects. Higher ranks repre-

sent increasingly exceptional cases. Our type checker verifies

that a program is internally consistent using only rank-0 as-

sumptions. If successful, we generate code with no runtime

checks. If not, we show exactly which assumptions conflict.

Using Turnstile [3], we implement our type system as a

macro-based DSL that integrates seamlessly with Racket. Us-

ing Rosette [4], we leverage SMT solving to find optimal type

assignments. The result is a practical system that captures

how Scheme programmers actually think about their code.

2 Motivation: A Financial Computing
Example

Consider computing moving averages over financial time

series:

Listing 1.Moving average computation

(define (moving-average prices window)
(define n (length prices))
(define (average-window start)

(define end (+ start window))
(define subset (take (drop prices start) window))
(/ (apply + subset) window))

(build-list (+ (- n window) 1)
(lambda (i) (average-window i))))

This straightforward code embeds several assumptions.

The window size must be positive, or division by zero occurs.

The price list must have at least window elements. The arith-

metic must not overflow. In production financial systems,

these assumptions are reasonable: market data streams are

never empty, window sizes come from validated configura-

tion, and prices stay within reasonable bounds.

Traditional approaches handle these assumptions poorly.

Typed Racket would require us to prove statically that win-

dow is positive, perhaps changing its type to Positive-Integer.
But this just pushes the problem to callers, who must now

prove they’re passing positive values. Contracts check at run-

time, adding overhead to every call, which is unacceptable

in high-frequency trading. Gradual typing inserts checks at

module boundaries, which still incurs runtime cost.

We, instead, choose to allow programmers to state their

assumptions explicitly:

Listing 2.Moving average with explicit assumptions

(define (moving-average prices window)
(assume-default

[(prices (Listof Real)) ; rank 0 assumption
(window PositiveInteger)] ; rank 0 assumption

...)) ; same body as before



, ,

The assume-default form declares that normally, prices
is a non-empty list of reals and window is positive. Our type

checker verifies that under these assumptions, the function

body type-checks without any possibility of runtime errors.

The generated code runs with no checks.

3 Default Types and Plausibility Rankings
To formalize the notion of “normal” behavior, we adapt plau-

sibility measures from classical AI research on uncertain

reasoning [1, 2]. The key insight is that types can be ranked

by how plausible they are for a given program point.

Definition 1 (Type Plausibility Measure). Given a set of
types T , a type plausibility measure is a function 𝜋 : T →
N ∪ {∞} satisfying:

1. 𝜋−1 (0) ≠ ∅ (at least one type is maximally plausible)
2. If 𝜏1 <: 𝜏2 (subtyping), then 𝜋 (𝜏1) ≥ 𝜋 (𝜏2) (supertypes

are at least as plausible)

The second condition captures a crucial design princi-

ple. In our framework, lower ranks mean higher plausibil-

ity. When PositiveReal is a subtype of Real, we assign

𝜋 (Real) = 0 and 𝜋 (PositiveReal) = 1. Why? Because

“the value is some real number” is a weaker, more general

assumption than “the value is positive.” We prefer weaker

assumptions as defaults, requiring programmers to explicitly

opt into stronger ones.

For our moving average example, consider division. We

might assign:

𝜋/ (Real, PositiveReal) = 0 (normal: positive divisor)

𝜋/ (Real, Real) = 1 (risky: might be zero)

𝜋/ (Real, Zero) = 2 (error: definitely zero)

When type-checking (/ (apply + subset) window),
the system tries to use the rank-0 rule. This succeeds only

if window has type PositiveInteger at rank 0, which our

assumption provides.

3.1 Composing Plausibility Across Expressions
The challenge is determining plausibility for compound ex-

pressions. If subexpression 𝑒1 has type 𝜏1 at rank 𝑟1 and 𝑒2

has type 𝜏2 at rank 𝑟2, what rank should (𝑒1 𝑒2) have?
We follow the principle of “weakest link”: a compound

expression is only as plausible as its least plausible part.

Formally:

Definition 2 (Plausibility Composition). For expression 𝑒

with subexpressions 𝑒1, . . . , 𝑒𝑛 , if we can derive 𝜏1, . . . , 𝜏𝑛 ⊢ 𝑒 :

𝜏 and each 𝑒𝑖 has type 𝜏𝑖 at rank 𝑟𝑖 , then 𝑒 has type 𝜏 at rank
max(𝑟1, . . . , 𝑟𝑛).
This ensures that if any subexpression requires a non-

default assumption (rank > 0), the whole expression inherits

that requirement. For our moving average, if we forgot to

assume window is positive, the division would require rank

1, propagating up through the function.

4 A Scalable Type System
We extend standard typing judgments with plausibility ranks.

The judgment Γ ⊢ 𝑒 : 𝜏@𝑟 means expression 𝑒 has type 𝜏 at

plausibility rank 𝑟 under context Γ.

Var

(𝑥 : 𝜏@𝑟 ) ∈ Γ

Γ ⊢ 𝑥 : 𝜏@𝑟

Abs

Γ, 𝑥 : 𝜏1@0 ⊢ 𝑒 : 𝜏2@𝑟

Γ ⊢ (lambda (𝑥) 𝑒) : 𝜏1 → 𝜏2@𝑟

App

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏@𝑟1 Γ ⊢ 𝑒2 : 𝜏1@𝑟2

Γ ⊢ (𝑒1 𝑒2) : 𝜏@ max(𝑟1, 𝑟2)

Subsume

Γ ⊢ 𝑒 : 𝜏@𝑟 𝑟 ≤ 𝑟 ′

Γ ⊢ 𝑒 : 𝜏@𝑟 ′

Assume

Γ, 𝑥 : 𝜏@0 ⊢ 𝑒 : 𝜏 ′@𝑟

Γ ⊢ (assume-default [𝑥 𝜏] 𝑒) : 𝜏 ′@𝑟

Prim

op : ∀𝛼.𝜏1 × · · · × 𝜏𝑛 → 𝜏 Γ ⊢ 𝑒𝑖 : 𝜏𝑖 [𝜎/𝛼]@𝑟𝑖
𝑟 = max(𝑟1, . . . , 𝑟𝑛, 𝜋op (𝜏1 [𝜎/𝛼], . . .))

Γ ⊢ (op 𝑒1 . . . 𝑒𝑛) : 𝜏 [𝜎/𝛼]@𝑟

Figure 1. Typing rules with plausibility ranks (simplified)

The key innovation is the Prim rule, which handles all

primitive operations uniformly. Each primitive op has an

associated plausibility measure 𝜋op that maps input type

tuples to minimum ranks. For example:

𝜋/ (Real, PositiveReal) = 0 Safe division

𝜋/ (Real, Real) = 1 Might divide by zero

𝜋car ((Listof 𝜏)) = 0 Non-empty list

𝜋car ((Listof?𝜏)) = 1 Might be empty

𝜋+ (Integer, Integer) = 0 Usually no overflow

𝜋+ (BigInt, BigInt) = 0 Never overflows

This approach scales to Racket’s full primitive set by defin-

ing appropriate plausibility measures. The Subsume rule

enables rank flexibility: a rank-0 value can be used where

rank-1 is expected (normal cases are special cases of excep-

tional ones).

5 From Types to Constraints
Type checking generates constraints over rank variables

rather than making binary decisions.

5.1 Constraint Generation
During macro expansion, Turnstile traverses the program

generating constraints. For our moving average example, the

expression (/ (apply + subset) window) generates:



Sound Default-Typed Scheme , ,

𝑟𝑠𝑢𝑚 ≥ max(𝑟𝑎𝑝𝑝𝑙𝑦, 𝑟+, 𝑟𝑠𝑢𝑏𝑠𝑒𝑡 ) (1)

𝑟𝑟𝑒𝑠𝑢𝑙𝑡 ≥ max(𝑟𝑠𝑢𝑚, 𝑟𝑤𝑖𝑛𝑑𝑜𝑤, 𝜋/ (𝜏𝑠𝑢𝑚, 𝜏𝑤𝑖𝑛𝑑𝑜𝑤)) (2)

The first constraint says the sum’s rank is at least the maxi-

mumof its components’ ranks. The second says the division’s

rank depends on both operands’ ranks and their types. If

𝜏𝑤𝑖𝑛𝑑𝑜𝑤 = PositiveInteger, then𝜋/ (Real, PositiveInteger) =
0. But if 𝜏𝑤𝑖𝑛𝑑𝑜𝑤 = Integer, then 𝜋/ (Real, Integer) = 1.

5.2 Why Lexicographic Minimization?
Simply minimizing the sum of all ranks fails catastrophically.

Consider:

(define (bad-example x)
(assume-default [(x Real)]

(if (zero? x)
(/ 1 x) ; deliberate error!
x)))

A naive solver might assign rank 0 to the else branch

and rank 2 to the error, achieving sum 2. But this accepts a

program with a definite error!

Instead, we use lexicographic minimization: first mini-

mize the count of rank-2 (error) assignments, then rank-1

(exceptional), then rank-0. This is encoded as minimizing:∑︁
𝑣∈vars

2
(𝑛−𝑟𝑣 ) · [𝑟𝑣 = 𝑘]

where [𝑟𝑣 = 𝑘] is 1 if variable 𝑣 has rank 𝑘 , and 0 oth-

erwise. The exponential weighting ensures that one rank-2

assignment outweighs any number of rank-1 assignments.

For our bad example, this forces the type checker to report

the definite division by zero.

5.3 Rosette Integration
We implement constraint solving using Rosette’s symbolic

execution:

Listing 3. Simplified Rosette integration

(define-symbolic-struct ranking
([vars (hash/c symbol? integer?)]))

(define (solve-constraints assumptions body)
(define r (ranking (make-hash)))
; Add assumption constraints
(for ([a assumptions])

(assert (= (hash-ref r.vars (car a)) 0)))
; Add body constraints
(define body-constraints (generate-constraints body r))
(for ([c body-constraints]) (assert c))
; Solve with lexicographic objective
(optimize #:minimize

(sum-weighted-ranks r.vars)
#:guarantee (verify r)))

For the 200-line moving average example, this typically

solves in under 100ms on modern hardware, making it prac-

tical for interactive development.

6 Design Decisions and Future Directions
6.1 Trade-offs
Explicit over inferred assumptions. We require pro-

grammers to state assumptions explicitly rather than in-

ferring them. While inference might seem convenient, it

obscures programmer intent and can hide bugs. If the sys-

tem inferred that division operands might be zero, it would

silently accept potentially buggy code. Explicit assumptions

serve as checked documentation.

Module boundaries. Our current prototype checks each
module independently, which can miss cross-module as-

sumption violations. We envision module contracts that in-

clude plausibility ranks:

(provide/contract/default
[process-data
(->i ([data (listof real?)]

[window positive-integer?])
#:pre/default (data window)
(> (length data) window)
[result (listof real?)])])

When whole-program analysis is impractical we fall back

on conservative ranks: imported values default to rank 1,

local code may still enjoy rank 0. Empirically, most perfor-

mance hotspots live in single modules anyway. Future work

explores “ranked” interface files akin to Typed Racket’s .Rktd

sigs.

Higher-order functions. These remain challenging.When

mapping a function over a list of positive numbers, how do

we ensure the function preserves positivity? Effect systems

like those in Koka [10] suggest a path forward, tracking not

just types but type transformations.

Conditional soundness. We provide a weaker guarantee

than traditional type systems: if the program type-checks

at rank 0 and runtime inputs satisfy rank-0 assumptions,

execution is type-safe. This is formalized as:

Γ ⊢0 𝑒 : 𝜏 ∧ 𝜎 |= Γ ⇒ ⟨𝑒, 𝜎⟩ ↛ error

This conditional guarantee fits many practical scenarios

where full verification is impossible but common-case cor-

rectness is crucial.

Why not just use contracts? Contracts remain the right

tool for rich cross-module invariants. But contracts charge

an overhead at every call site, which is untenable in hot paths

(finance, graphics pipelines, numerics). Default typing shifts

that cost into compile time and only for the normal case;

exceptional paths may still fall back to contracts if desired.

6.2 Going forward
There are a handful of immediate areas for future work.

We can start with the question: what if the programmer is

not sure when to explicitly call assume-default blocks? To



, ,

reduce friction, we propose assumption mining: a Rosette-
backed profiler executes the program on representative in-

puts, clusters observed types, and suggests plausible rank-0

candidates.

In addition, we are intent on mechanizing our soundness

proof, integrating with Typed Racket’s occurrence typing,

and conducting empirical studies on real Racket codebases.

We’re particularly interested in whether programmers’ ac-

tual assumptions align with what our system can verify.

7 Related Work
Default typing occupies a unique position in the landscape

of type systems for dynamic languages. Soft typing [5, 6] pio-

neered static analysis for Scheme but focused on finding def-

inite errors. We focus on verifying programmer assumptions

about normal behavior. Where soft typing is conservative

(rejecting only definite errors), we’re optimistic (accepting

only programs correct under stated assumptions).

Gradual typing [7, 8] allows mixing typed and untyped

code but requires runtime checks at boundaries. We reject

any program needing runtime checks, forcing all assump-

tions to be explicit and statically verified.

Occurrence typing in Typed Racket [8] refines types based

on runtime tests.We could extend our system to refine plausi-

bility ranks after type tests, potentially enabling more rank-0

assumptions in branches.

Refinement types [9] prove precise properties but require

significant annotation effort. Default typing provides a lighter-

weight alternative for cases where full verification is unneces-

sary. A hybrid system could use refinement types for critical

properties and default types for performance optimizations.

8 Conclusion
Default typing attempts to formalize a fundamental aspect

of how programmers think: the distinction between what

could happen and what usually happens. By integrating

plausibility rankings into Racket’s extensible type system,

we enable efficient code generation for common cases while

maintaining safety guarantees.

Our approach is particularly suited to domains where

programmers have strong beliefs about normal behavior:

financial computing (non-zero values), scientific computing

(non-singular matrices), and systems programming (success-

ful allocations). It’s less suitable for adversarial contexts

where assumptions may be violated deliberately.

The integration with Turnstile and Rosette demonstrates

the power of Racket’s language-oriented programming ap-

proach. What would require compiler modifications in other

languages becomes a library in Racket. This opens possi-

bilities for domain-specific variations: different plausibility

measures for different problem domains.

We see default typing not as a replacement for existing

approaches but as a new point in the design space. One that

acknowledges the reality of how programmers reason about

their code while providing machine-checkable guarantees.

In the spirit of the Scheme community’s tradition of thought-

ful language design, we offer this approach as a tool for

capturing programmer intent more faithfully.

References
[1] Halpern, J. Y., & Friedman, N. (1995). Plausibility measures and default

reasoning. In AAAI (pp. 1297–1304).
[2] Halpern, J. Y. (2003). Reasoning about uncertainty. MIT Press.

[3] Chang, S., Knauth, A., & Greenman, B. (2017). Type systems as macros.

In POPL (pp. 694–705).

[4] Torlak, E., & Bodik, R. (2014). A lightweight symbolic virtual machine

for solver-aided host languages. In PLDI (pp. 530–541).
[5] Cartwright, R., & Fagan, M. (1991). Soft typing. In PLDI (pp. 278–292).
[6] Wright, A. K., & Cartwright, R. (1994). A practical soft type system for

Scheme. In LFP (pp. 250–262).

[7] Siek, J. G., & Taha, W. (2006). Gradual typing for functional languages.

In Scheme Workshop.
[8] Tobin-Hochstadt, S., & Felleisen, M. (2008). The design and implemen-

tation of Typed Scheme. In POPL (pp. 395–406).

[9] Vazou, N., et al. (2014). Refinement types for Haskell. In ICFP (pp.

269–282).

[10] Leijen, D. (2014). Koka: Programming with row polymorphic effect

types. In MSFP.


	Abstract
	1 Introduction
	2 Motivation: A Financial Computing Example
	3 Default Types and Plausibility Rankings
	3.1 Composing Plausibility Across Expressions

	4 A Scalable Type System
	5 From Types to Constraints
	5.1 Constraint Generation
	5.2 Why Lexicographic Minimization?
	5.3 Rosette Integration

	6 Design Decisions and Future Directions
	6.1 Trade-offs
	6.2 Going forward

	7 Related Work
	8 Conclusion
	References

