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Abstract

This document provides comprehensive technical notes for a presentation on Sound
Default-Typed Scheme, a computational framework for studying and implementing plausibil-
ity reasoning in programming language type systems. Drawing from Halpern’s foundational
work on plausibility measures as qualitative generalizations of probability theory, we demon-
strate how classical uncertainty reasoning from artificial intelligence can be computationally
modeled within type systems to study problems of belief, default reasoning, and knowledge
representation. Our system introduces plausibility-ranked types where program points carry
qualitative uncertainty annotations representing degrees of belief about runtime behavior,
enabling the computational study of how uncertain knowledge affects program verification
and optimization. Rather than competing with existing type system approaches, this work
establishes a new research direction for integrating qualitative uncertainty reasoning into
programming language theory, opening pathways for future research on computability of
plausibility expressions, gradual uncertainty refinement, and probabilistic program analysis.
The implementation leverages Racket’s macro-extensible architecture (Turnstile) and con-
straint solving infrastructure (Rosette) to provide a practical laboratory for investigating
these theoretical questions.

1 Computational Plausibility: From Knowledge Representation
to Programming Languages

The foundational motivation for this work emerges from a recognition that programming
languages have historically focused on binary notions of correctness: programs either type check
or they do not, properties either hold or they do not, assumptions are either provable or they
are not. However, both human reasoning about programs and the underlying computational
problems programmers solve often involve degrees of belief, uncertain knowledge, and qualitative
orderings that resist such binary treatment. This observation connects directly to a rich
tradition in artificial intelligence and knowledge representation that has developed sophisticated
mathematical frameworks for reasoning under uncertainty.

Joseph Halpern’s seminal work on plausibility measures provides a particularly compelling
foundation for bridging this gap. In his comprehensive treatment “Reasoning about Uncertainty,”
Halpern demonstrates how plausibility measures generalize probability theory by replacing nu-
meric probability assignments with qualitative orderings over possible worlds. This generalization
captures forms of uncertain reasoning that are common in human cognition but difficult to
model probabilistically: scenarios where we know that some outcomes are ”more plausible” than
others without having precise numerical probabilities for each possibility.

The central insight driving our work is that the kinds of reasoning programmers engage
in when writing and reasoning about code exhibit exactly the characteristics that plausibility
theory was designed to model. When a programmer writes (/ total count), they are not
making a formal mathematical statement about the impossibility of count being zero. Neither
are they making a precise probabilistic claim about the likelihood of zero values. Instead, they
are expressing a plausibility judgment : a qualitative assessment that in the normal, expected
execution contexts for this code, count will be positive. This judgment may be grounded in
domain knowledge, operational experience, or architectural constraints, but it fundamentally
represents uncertain knowledge about runtime behavior.

Traditional programming language theory has struggled to accommodate this kind of rea-
soning. Type systems typically require proofs of correctness that eliminate uncertainty entirely,
while dynamic approaches defer all checking to runtime, providing no support for reasoning about
plausible versus implausible behaviors. The gap between these approaches leaves a crucial class
of computational problems unexplored: problems where we have partial, uncertain knowledge
that is nonetheless valuable for program analysis, optimization, and verification.
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Our contribution is to demonstrate that plausibility theory provides a natural and com-
putationally tractable framework for studying these problems within programming language
contexts. By lifting plausibility measures from the semantic level of knowledge representation
to the syntactic level of type systems, we create a laboratory for investigating fundamental
questions about how uncertain knowledge affects computation. This is not merely an engineering
exercise in building a better type checker, but rather a research program aimed at understanding
the computational properties of plausibility reasoning itself.

The questions this approach enables us to study are precisely the kinds of problems that
Halpern identified as central to uncertain reasoning but that have remained largely unexplored
in programming language contexts. How do plausibility orderings compose across program
boundaries? What are the computational complexity characteristics of constraint solving over
plausibility rankings? How can qualitative uncertainty specifications be gradually refined into
quantitative probabilistic models? Under what conditions can plausibility-based analysis provide
computational advantages over purely logical or purely probabilistic approaches?

These questions connect to broader research programs in probabilistic programming, gradual
typing, and knowledge representation, but they require new theoretical and practical foundations
to investigate effectively. The type system we present serves as a concrete computational model
for exploring these theoretical questions while demonstrating their practical relevance to program
optimization and verification problems.

2 Plausibility Theory as Computational Foundation

To understand how plausibility measures can serve as a computational foundation for uncertain
reasoning in programming languages, we must first establish the mathematical framework that
Halpern developed for representing and manipulating uncertain knowledge. This framework
generalizes classical probability theory in ways that are particularly well-suited to the kinds of
reasoning problems that arise in program analysis and verification.

The fundamental insight underlying plausibility theory is that much uncertain reasoning
involves qualitative comparisons rather than precise quantitative assessments. When we say that
one event is “more plausible” than another, we are expressing a preference ordering that may
not correspond to any particular probability assignment. Halpern’s framework captures this by
replacing the real-valued probability functions of classical probability theory with functions that
map events to elements of an arbitrary partially ordered set representing degrees of plausibility.

2.1 Plausibility Spaces: The Mathematical Foundation

The general framework begins with plausibility spaces, which provide the most abstract setting for
reasoning about uncertain beliefs without requiring the additivity constraints that characterize
probability measures.

Definition 2.1 (Plausibility Space (Halpern)). A plausibility space is a tuple (W,F ,Pl, (D,⪯))
where:

1. W is a set of possible worlds representing the space of all scenarios under consideration;

2. F is a field of events, consisting of subsets of W that represent propositions about which
we can reason;

3. (D,⪯) is a partially ordered domain of plausibility values, with least element ⊥ representing
impossible events and greatest element ⊤ representing tautological events;

4. Pl : F → D is a plausibility assignment satisfying monotonicity: if A ⊆ B then Pl(A) ⪯
Pl(B), reflecting the principle that larger sets of possibilities should be at least as plausible
as their subsets;
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5. Boundary conditions typically require Pl(∅) = ⊥ and Pl(W ) = ⊤, ensuring that impossible
events receive minimal plausibility and tautologies receive maximal plausibility.

This general framework subsumes classical probability theory as the special case where D =
[0, 1], ⪯ is the usual ordering on real numbers, and Pl satisfies additivity requirements. However,
it also encompasses many other important uncertainty formalisms, including possibility theory,
belief functions, and the ranking functions that prove particularly useful for our computational
applications.

The key advantage of this generalization is that it allows us to reason about uncertain
knowledge even when we lack the precise information required for probabilistic modeling. In
programming language contexts, this translates to the ability to express and reason about
programmer beliefs and domain knowledge that influence program behavior without requiring
precise statistical characterization of runtime properties.

When we instantiate this framework for type system applications, possible worlds correspond
to potential runtime type assignments to program variables. An event A ∈ F represents a
set of type assignments that satisfy some property of interest—for example, “variable x has a
positive-valued type” or “list l is non-empty.” The plausibility assignment Pl(A) then captures
our degree of belief that this property holds in normal program execution contexts.

This instantiation immediately raises computational questions that are central to our research
program. How should plausibility values be represented and manipulated algorithmically? What
constraint solving techniques are required to reason about plausibility orderings? How do
plausibility assignments compose when reasoning about compound program properties? These
questions drive much of our technical development and point toward broader research directions
in computational uncertainty reasoning.

2.2 Ranking Functions: Computational Tractability

While the general plausibility space framework provides important theoretical generality, practi-
cal computational applications require more structured representations that support efficient
algorithmic manipulation. Spohn’s ranking functions provide exactly this kind of computation-
ally tractable instantiation while preserving the essential qualitative character of plausibility
reasoning.

Definition 2.2 (Ranking Function (Spohn)). A ranking function (also called an ordinal condi-
tional function) is a mapping κ : W → N ∪ {∞} such that κ−1(0) ̸= ∅, meaning that at least one
possible world receives the minimal rank of zero.

The ranking extends naturally to events through minimization: κ(A) = min{κ(w) : w ∈ A}
for any non-empty event A, with κ(∅) = ∞ representing the impossibility of empty events. This
construction ensures that the ranking of a set of possibilities is determined by its most plausible
member, which corresponds to our intuition that a property is as believable as its most credible
instance.

The numerical representation using natural numbers might initially suggest that ranking
functions are simply discrete probability distributions, but this interpretation misses the crucial
qualitative character of the representation. The numbers serve as ordinal labels rather than
cardinal quantities—what matters is the ordering relationship κ(A) < κ(B), indicating that
event A is more plausible than event B, rather than any arithmetic relationship between the
specific numerical values.

This ordinal interpretation has important computational consequences. Unlike probability
distributions, ranking functions support natural conditioning operations that preserve the
qualitative structure: conditioning on evidence E transforms a ranking κ into a new ranking κE

where κE(A) = κ(A∩E)−κ(E), provided κ(E) < ∞. This operation corresponds exactly to the
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process of updating beliefs in light of new evidence, which is fundamental to how programmers
reason about code behavior as they gain more information about execution contexts.

The connection between ranking functions and default reasoning becomes apparent through
the characterization of default rules in terms of plausibility comparisons:

Proposition 2.1 (Defaults from Rankings (Halpern, Spohn)). Given a ranking function κ, a
default rule “in context A, normally B holds” is valid precisely when κ(A ∧ ¬B) > κ(A ∧ B),
meaning that the A-worlds where B fails are less plausible than the A-worlds where B succeeds.

This proposition provides the theoretical foundation for our computational approach to
default reasoning in type systems. When a programmer expresses the belief that “expressions of
type Real are normally positive,” they are implicitly asserting a ranking relationship: worlds
where Real-typed expressions have negative values are less plausible than worlds where they
have positive values. Our type system makes these implicit rankings explicit and provides
computational mechanisms for verifying their consistency and propagating their consequences.

The computational advantages of ranking functions extend beyond their natural interpretation
to their algorithmic properties. The discrete, ordinal nature of rankings enables efficient constraint
solving using standard integer programming techniques. The conditioning operations required
for belief updating can be implemented using simple arithmetic on natural numbers. The
composition of rankings across program boundaries can be handled through operations that
preserve the essential ordering relationships while avoiding the numerical precision issues that
plague probabilistic approaches.

These computational properties are crucial for our research program because they enable
us to study questions about plausibility reasoning that would be intractable with more general
uncertainty representations. We can investigate the complexity of constraint solving over plausi-
bility orderings, develop algorithms for automatically inferring reasonable ranking assignments,
and explore the relationships between plausibility-based analysis and other program analysis
techniques.

3 The Plausibility-Probability Abstraction Hierarchy: A Galois
Connection Framework

The fundamental theoretical contribution of our work lies in establishing a rigorous computational
relationship between plausibility measures as qualitative abstractions and probability measures
as quantitative concretizations. This relationship exhibits the mathematical structure of a Galois
connection, providing formal foundations for understanding how qualitative uncertainty reasoning
relates to quantitative probabilistic analysis and how computational plausibility reasoning can
serve as an abstraction layer above probabilistic programming.

The key insight driving this theoretical development is that plausibility measures constitute
a natural abstraction of probability measures in the precise sense of abstract interpretation
theory. Just as abstract interpretation allows us to reason about program properties using sim-
plified domains that preserve essential relationships while eliminating computational complexity,
plausibility reasoning allows us to reason about uncertain knowledge using qualitative orderings
that preserve essential uncertainty relationships while eliminating the precision requirements of
probabilistic analysis.

This abstraction relationship is not merely a conceptual convenience but a formal mathemat-
ical structure that enables systematic reasoning about the conditions under which qualitative
plausibility analysis can safely approximate quantitative probabilistic analysis. Understanding
this structure is crucial for developing principled approaches to gradual uncertainty refinement
and for characterizing the computational trade-offs between different uncertainty reasoning
strategies.
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3.1 Formal Abstraction Structure

The mathematical foundation for our abstraction hierarchy begins with the observation that
both plausibility measures and probability measures can be understood as instances of a more
general framework for representing uncertain knowledge over structured domains. This general
framework enables us to define formal relationships between different uncertainty representations
and to characterize the conditions under which these relationships preserve essential mathematical
properties.

We begin by establishing the concrete and abstract domains that participate in our abstraction
relationship. The concrete domain consists of probability measures over some underlying space
of possibilities, while the abstract domain consists of plausibility measures represented through
ranking functions that capture qualitative uncertainty orderings.

Definition 3.1 (Concrete Probabilistic Domain). Let (Ω,F ,Prob) be a probability space where Ω
represents the space of possible computational behaviors, F is a σ-algebra of events representing
properties about which we can reason probabilistically, and Prob : F → [0, 1] is a probability
measure satisfying the standard axioms of additivity and normalization.

The concrete domain captures the full quantitative structure of uncertain reasoning, providing
precise numerical assessments of the likelihood of different computational behaviors. However,
this precision comes at the cost of requiring detailed statistical knowledge about the underlying
computational phenomena, which may not be available in many practical applications.

Definition 3.2 (Abstract Plausibility Domain). Let (Ω,F , κ) be a plausibility space where Ω
and F are as above, and κ : Ω → N ∪ {∞} is a ranking function satisfying the conditions that
κ−1(0) ̸= ∅ and extending to events through κ(A) = min{κ(ω) : ω ∈ A} for non-empty A ∈ F .

The abstract domain sacrifices quantitative precision in favor of qualitative ordering relation-
ships that can be established based on domain knowledge, empirical observation, or computational
constraints rather than detailed statistical analysis. The crucial question is whether this sacrifice
preserves the essential uncertainty relationships that are needed for computational reasoning.

To characterize this relationship formally, we define abstraction and concretization functions
that establish the correspondence between the probabilistic and plausibility domains.

Definition 3.3 (Abstraction Function). The abstraction function α : M(Ω,F) → R(Ω,F)
maps probability measures to ranking functions according to the principle that events with higher
probability receive lower ranks (higher plausibility). Specifically, for a probability measure Prob
and a parameterized family of thresholds {tk}k∈N with 1 > t0 > t1 > · · · > 0, we define:

α(Prob)(ω) = min{k : Prob({ω}) ≥ tk}

with the convention that α(Prob)(ω) = ∞ if Prob({ω}) = 0.

This abstraction function captures the intuition that plausibility rankings should reflect
relative likelihood relationships while abstracting away from precise numerical probabilities. The
threshold parameters {tk} provide flexibility in how the quantitative-to-qualitative translation is
performed, enabling different abstraction strategies for different application contexts.

Definition 3.4 (Concretization Function). The concretization function γ : R(Ω,F) → P(M(Ω,F))
maps ranking functions to sets of probability measures that are consistent with the qualitative
ordering constraints. For a ranking function κ, we define:

γ(κ) = {Prob ∈ M(Ω,F) : ∀ω1, ω2 ∈ Ω, κ(ω1) < κ(ω2) =⇒ Prob({ω1}) > Prob({ω2})}

The concretization function captures the set of all probability measures that respect the
plausibility ordering constraints imposed by the ranking function. This set-valued concretization
reflects the fact that qualitative plausibility information typically under-constrains the space of
possible quantitative probability assignments.
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Concrete
Domain

Probability
Measures
M(Ω,F)

Prob : F → [0, 1]
Precise quan-
titative values

Abstract
Domain

Plausibility
Rankings
R(Ω,F)

κ : Ω → N ∪ {∞}
Qualitative
orderings

Abstraction α
Extract ordering
from probabilities

Concretization γ
Generate consistent
probability sets

Galois Connection: α(Prob) ⊑ κ ⇐⇒ Prob ∈ γ(κ)

3.2 Concrete Example: Network Failure Analysis

To understand this abstraction relationship clearly, consider a network monitoring system that
must reason about connection failures. This example illustrates both when probabilistic modeling
is appropriate and when plausibility reasoning becomes necessary.

The Concrete Probabilistic Model: Suppose we have historical data showing that network
connections fail with the following measured probabilities:

Prob(normal operation) = 0.92 (1)

Prob(transient failure) = 0.07 (2)

Prob(hardware failure) = 0.01 (3)

This concrete probabilistic model requires extensive measurement data, statistical analysis,
and assumes that future behavior follows historical patterns. The concrete domain captures
precise quantitative relationships but demands significant computational and data collection
resources.

The Abstract Plausibility Model: The abstraction function α maps these probabilities to
plausibility rankings based on threshold levels. Using thresholds t0 = 0.5, t1 = 0.05, t2 = 0.001:

κ(normal operation) = 0 (most plausible) (4)

κ(transient failure) = 1 (less plausible) (5)

κ(hardware failure) = 2 (least plausible) (6)

This abstract model preserves the essential ordering relationships while eliminating the need
for precise numerical values. It enables efficient reasoning using discrete constraint solving rather
than continuous optimization.

Cases Requiring Pure Plausibility Reasoning: Consider a new deployment scenario where
we lack historical data but have engineering knowledge:

• Domain expertise: “Hardware failures are definitely worse than software glitches”

• Design assumptions: “The system should optimize for the common case of normal
operation”
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• Debugging insight: “Type errors usually indicate deeper architectural problems”

These qualitative beliefs cannot be expressed probabilistically without arbitrary numerical
assignments, yet they contain crucial information for system design and analysis. Plausibility
rankings capture this knowledge directly:

κ(normal) < κ(software issue) < κ(hardware failure) < κ(impossible)

The concretization function γ(κ) then generates the set of all probability measures consistent
with these qualitative constraints, enabling gradual refinement as more data becomes available.

3.3 Program State Abstraction: From Concrete Execution to Plausibility
Types

The abstract interpretation framework extends naturally to program analysis, where we abstract
from the complex space of concrete program executions to simplified plausibility-typed program
states. This abstraction enables static reasoning about dynamic uncertainty without requiring
full program execution.

Concrete Executions

Econcrete
All possible runtime
behaviors and values

Abstract Domain: Plausibility Types (Eabstract)

Rank 0: Safe (normal case)

Rank 1: Exceptional (checked/guarded)

Rank 2+: Rejected (definite error)

αprog

γprogLegend:

• Definitely safe executions

• Potentially unsafe executions

• Rank 0: compiles to zero checks on hot paths
• Rank 1: requires guards/contracts or alterna-
tive paths
• Rank 2+: statically rejected (e.g., divide-by-
zero)

Concrete Program Executions: The concrete domain contains all possible runtime behaviors
of typed programs. This encompasses successful executions that complete without errors
(represented as green points in the diagram), failure executions that encounter runtime errors,
type violations, or resource exhaustion (red points), and the complex interactions between
program components, environmental conditions, and input variations. Each point represents a
complete execution trace with specific values, timing, memory usage, and outcome. The concrete
domain is undecidable in general—determining which programs will fail requires solving the
halting problem.

Abstract Plausibility Types: The abstract domain partitions programs into plausibility-
ranked categories based on static analysis. Programs with plausibility type annotations indicating
high confidence in successful execution are classified in the safe region, while those with plausibility
annotations indicating potential for failure or exceptional behavior fall into the unsafe region.
The abstraction function αprog uses type-directed analysis to map concrete execution behaviors
to qualitative plausibility assessments.
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This abstraction enables decidable static analysis where plausibility type checking terminates
and provides definitive answers, unlike the undecidable concrete domain. It provides safe
overapproximation, meaning that if the analysis classifies a program as safe, all its concrete
executions are guaranteed to be safe. Furthermore, it enables efficient reasoning through discrete
plausibility constraints that avoid the computational complexity of precise behavioral analysis.
The key insight is that while we cannot predict exact runtime behavior, we can statically
classify programs according to their plausibility of success, enabling optimization and verification
strategies that focus computational resources on the most plausible execution paths.

3.4 Why Probability Theory is a Special Case

The relationship between plausibility and probability is not one of competing alternatives, but
rather a principled abstraction hierarchy where probability theory emerges as a special case with
additional structure and constraints.

Probability as Constrained Plausibility: Every probability measure Prob naturally induces
a plausibility ranking via the abstraction function: events with higher probability receive lower
plausibility ranks (higher plausibility). However, the converse is not true: plausibility rankings
typically correspond to sets of probability measures rather than unique measures.

This asymmetry is fundamental. Probability theory requires additivity (Prob(A ∪ B) =
Prob(A) + Prob(B) when A ∩ B = ∅), normalization (Prob(Ω) = 1), and precise numerical
values where each event receives an exact real number in [0, 1]. Plausibility theory relaxes these
constraints, requiring only monotonicity (if A ⊆ B then κ(A) ≥ κ(B), meaning larger sets are
at least as plausible), boundary conditions (κ(∅) = ∞ and κ(Ω) = 0), and qualitative orderings
where events receive discrete ranks expressing relative plausibility.

When Plausibility is Essential (Not Probabilistically Expressible): Consider reasoning
about software design principles such as the architectural belief that “monolithic designs are more
problematic than modular ones,” the development practice that ”code review catches more errors
than automated testing alone,” or the performance intuition that ”algorithm choice matters
more than micro-optimizations.” These represent genuine knowledge that affects programming
decisions, but they cannot be meaningfully expressed as probability distributions without artificial
numerical assignments. The knowledge is inherently qualitative: we know the relative ordering
but lack (and often don’t need) precise quantitative measures.

Attempting to force such knowledge into probabilistic form requires arbitrary choices that
obscure the actual epistemic state. Plausibility rankings capture exactly the knowledge we
possess without adding spurious precision.

Gradual Refinement Pathway: The Galois connection enables principled refinement from
qualitative to quantitative reasoning. We begin with plausibility by expressing domain knowledge
as qualitative rankings, then identify constraints by using concretization to characterize consistent
probability sets. As we collect data, we narrow the probability set through measurement and
observation, eventually converging to precision by approaching specific probability measures as
data accumulates. This pathway preserves the original qualitative insights while enabling gradual
incorporation of quantitative information, avoiding the false choice between “no uncertainty
reasoning” and ”full probabilistic modeling.”

The visual structure of this diagram reflects the standard abstract interpretation methodology
where the abstract domain provides a computationally tractable approximation of the concrete
domain. The oval shapes emphasize that these are mathematical domains with internal structure,
while the curved arrows show the bidirectional relationship between abstraction and concretization
that characterizes Galois connections.
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3.5 Galois Connection Properties and Computational Implications

The abstraction and concretization functions we have defined exhibit the mathematical structure
of a Galois connection, which provides formal guarantees about the relationship between
qualitative plausibility reasoning and quantitative probabilistic analysis. These guarantees are
essential for understanding when plausibility-based analysis can safely approximate probabilistic
analysis and what information is necessarily lost in the abstraction process.

Proposition 3.1 (Galois Connection Structure). The functions α and γ form a Galois connection
between the concrete domain of probability measures (ordered by pointwise comparison) and the
abstract domain of ranking functions (ordered by pointwise comparison), satisfying:

1. Monotonicity: α and γ preserve the respective ordering structures;

2. Adjunction: α(Prob) ⊑ κ ⇐⇒ Prob ∈ γ(κ);

3. Closure properties: γ ◦ α is a closure operator on probability measures, and α ◦ γ is a
closure operator on ranking functions.

The adjunction property is particularly important for computational applications because it
provides a formal characterization of when a probability measure is consistent with a plausibility
ranking. This characterization enables us to reason about the soundness of plausibility-based
analysis: if we can establish that a plausibility ranking κ holds for a computational problem, then
we know that any probability measure in γ(κ) respects the uncertainty relationships captured
by the ranking.

The closure properties tell us about the precision that is necessarily lost in the abstraction
process. The closure γ ◦ α maps each probability measure to the set of all probability measures
that are indistinguishable at the level of plausibility rankings. This characterizes exactly what
quantitative information is lost when we abstract from probabilities to plausibilities.

These mathematical properties have direct computational implications for our type system
design. The Galois connection structure guarantees that our plausibility-based analysis is sound
with respect to any probabilistic analysis that respects the same uncertainty orderings. This
provides formal foundations for arguing that optimizations based on plausibility reasoning will be
valid for any underlying probabilistic model that is consistent with the programmer’s qualitative
uncertainty specifications.

3.6 Computational Advantage Through Abstraction

The theoretical framework we have established enables us to characterize precisely the computa-
tional advantages that plausibility reasoning provides over direct probabilistic analysis, and to
understand the conditions under which these advantages can be realized without loss of essential
information.

The key computational advantage of plausibility abstraction lies in transforming constraint
solving problems over continuous domains (probability distributions) into constraint solving
problems over discrete domains (ranking functions). This transformation typically yields
significant improvements in computational tractability while preserving the essential ordering
relationships that drive program analysis and optimization decisions.

Consider the problem of determining whether a set of uncertainty constraints has a solution.
In the probabilistic setting, this requires solving systems of polynomial inequalities over real
variables representing probability assignments. Such systems can exhibit complex geometric
structure and may require sophisticated numerical methods for reliable solution. In the plausibility
setting, the same problems reduce to constraint satisfaction over discrete orderings, which can
typically be solved using efficient combinatorial algorithms.
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The abstraction also enables compositional reasoning about uncertainty that is difficult
to achieve in probabilistic settings. When uncertainty assumptions must be combined across
program boundaries, the qualitative nature of plausibility rankings allows for natural composition
operations (such as taking maxima) that preserve essential relationships without requiring detailed
knowledge about statistical dependencies between different sources of uncertainty.

However, the computational advantages of abstraction come with precision costs that must
be carefully characterized. The Galois connection framework provides tools for understanding
these costs and for developing strategies to minimize them in specific application contexts.

3.7 Concrete Examples: External Program Cases Beyond Probabilistic Cap-
ture

To illustrate the practical importance of the plausibility abstraction hierarchy, we examine specific
computational scenarios where probabilistic reasoning is insufficient or impractical, but where
plausibility reasoning provides valuable analytical capabilities. These examples demonstrate the
concrete utility of qualitative uncertainty abstraction beyond its theoretical elegance.

3.7.1 Operational Knowledge in Distributed Systems

Consider a microservice monitoring system that must reason about service health based on latency
measurements and failure rates. The crucial insight is that the operational knowledge driving
such systems typically lacks the statistical precision required for probabilistic modeling, but
exhibits clear qualitative ordering relationships that are well-captured by plausibility rankings.

In a typical operational context, system administrators know that certain service behaviors
are “normal” and others are ”exceptional,” but they rarely have access to precise probability
distributions over service behaviors. They know that response times under 100ms are typical,
that response times over 1000ms indicate problems, and that complete service failures are serious
issues requiring immediate attention. However, they typically cannot provide precise statistical
characterizations of the likelihood of different latency distributions or failure patterns.

1 ;; Probabilistic specification: requires precise statistical knowledge

2 (define-probabilistic-service-model

3 [(latency-distribution (Gaussian mean: 50ms variance: 100))

4 (failure-probability 0.001)

5 (load-correlation (Linear coefficient: 0.8))])

6

7 ;; Plausibility specification: captures operational knowledge

8 (assume-plausibility

9 [(latencies (NonEmptyListof (Bounded Real 0 1000))) ; rank 0: normal operation

10 (failures (Bounded Natural 0 (* 0.01 total-requests))) ; rank 0: low failure rate

11 (measurement-validity SystemReliable)] ; rank 0: monitoring works

12 (compute-service-health-score latencies failures))

The probabilistic specification requires detailed statistical knowledge that is typically unavail-
able in operational contexts. The system administrator would need to have empirically validated
probability distributions, statistical models of correlations between different system variables,
and confidence intervals around all parameter estimates. This level of statistical sophistication
is rarely available in practice and imposes significant cognitive and computational overhead.

The plausibility specification captures the same essential uncertainty relationships using
qualitative orderings that directly reflect operational knowledge. The administrator can express
their beliefs about normal versus exceptional system behaviors without requiring precise statis-
tical characterization. The computational framework can then reason about these qualitative
relationships to provide system analysis and optimization capabilities.
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The key insight is that the plausibility abstraction enables reasoning about uncertain
operational knowledge that cannot be easily captured in probabilistic frameworks. The qualitative
ordering relationships (normal operation vs. exceptional circumstances) are typically much more
accessible to domain experts than precise probability assignments.

3.7.2 Mathematical Assumptions in Numerical Computing

Numerical computing provides another compelling illustration of scenarios where plausibility rea-
soning captures essential uncertainty relationships that are difficult or impossible to characterize
probabilistically. Numerical algorithms typically depend on mathematical assumptions about
problem structure that are reasonable in application contexts but cannot be verified statically
and resist precise statistical characterization.

Consider an iterative eigenvalue computation that assumes the input matrix is well-conditioned.
This assumption is crucial for algorithmic correctness and performance, but it represents mathe-
matical structural knowledge rather than statistical likelihood information.

1 ;; Probabilistic approach: requires distribution over matrix spaces

2 (define-matrix-distribution

3 [(eigenvalue-spread (Log-normal mean: 1 variance: 0.5))

4 (condition-number (Bounded-Pareto shape: 1.5 max: 1000))

5 (numerical-precision (Floating-point-error-model bits: 64))])

6

7 ;; Plausibility approach: captures mathematical structure assumptions

8 (assume-plausibility

9 [(matrix (WellConditioned RealMatrix)) ; rank 0: good structure

10 (tolerance (Positive Real)) ; rank 0: valid parameter

11 (convergence-bound (Bounded Integer 1 1000))] ; rank 1: iteration limit

12 (iterative-eigensolve matrix tolerance convergence-bound))

The probabilistic approach requires detailed statistical knowledge about the distribution of
mathematical objects (matrices, condition numbers, numerical errors) that is typically unavailable
and difficult to obtain empirically. How should one characterize the probability distribution
over the space of matrices that might arise in specific application contexts? What statistical
model should govern the relationship between mathematical problem structure and algorithmic
behavior?

The plausibility approach sidesteps these difficult statistical questions by focusing on the
qualitative structural relationships that numerical analysts actually reason with. Matrices are
“well-conditioned” or ”ill-conditioned,” tolerance parameters are ”reasonable” or ”problematic,”
iteration bounds are ”sufficient” or ”insufficient.” These qualitative judgments directly reflect
the mathematical knowledge that drives algorithm design and analysis.

The abstraction hierarchy provides formal foundations for understanding how these qualitative
mathematical judgments relate to quantitative algorithmic analysis. The plausibility rankings
capture the essential structural relationships without requiring the statistical precision that
probabilistic approaches demand.

3.7.3 Gradual Refinement and Default Typing

Perhaps the most significant computational advantage of the plausibility abstraction hierarchy
lies in its support for gradual refinement of uncertainty specifications. This capability enables
computational frameworks that begin with coarse qualitative uncertainty information and become
increasingly precise as additional knowledge becomes available, without requiring wholesale
changes to the underlying analytical framework.

Consider the evolution of uncertainty specifications as a software system develops from initial
prototyping through deployment and operational experience:
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1 ;; Initial prototype: minimal plausibility assumptions

2 (assume-plausibility

3 [(user-input Valid) ; rank 0: basic validity

4 (network-connectivity Available)] ; rank 0: network works

5 (process-user-request user-input))

6

7 ;; Development phase: refined assumptions based on testing

8 (assume-plausibility

9 [(user-input (ValidatedInput schema: user-schema)) ; rank 0: schema validation

10 (network-connectivity (Reliable uptime: 0.99)) ; rank 0: high availability

11 (database-response (Bounded-Latency max: 5000ms))] ; rank 1: reasonable

performance

12 (process-user-request user-input))

13

14 ;; Production phase: probabilistic refinement based on operational data

15 (assume-plausibility

16 [(user-input (ValidatedInput schema: user-schema)) ; rank 0: validated

17 (network-connectivity (Probabilistic success-rate: 0.995)) ; rank 0: measured

reliability

18 (database-response (Measured-Distribution latency-histogram))] ; rank 0: empirical

data

19 (process-user-request user-input))

This progression illustrates how the plausibility abstraction hierarchy supports natural evo-
lution from qualitative to quantitative uncertainty specifications. The computational framework
can provide analytical capabilities at each level of precision without requiring fundamental
changes to the underlying type system or analytical algorithms.

The Galois connection structure ensures that refinements preserve the essential uncertainty
relationships established in earlier phases. When operational data enables probabilistic charac-
terization of some uncertainty relationships, the framework can incorporate this information
while maintaining compatibility with qualitative characterizations of other relationships for
which statistical data remains unavailable.

This gradual refinement capability addresses a fundamental limitation of purely probabilistic
approaches: the requirement for complete statistical specification before any analytical capabilities
are available. The plausibility abstraction hierarchy enables useful computational analysis
based on partial uncertainty information while providing systematic pathways for incorporating
additional precision as it becomes available.

4 From Plausibility to Computational Types: The Research
Framework

The central technical challenge in our research is bridging the gap between the abstract math-
ematical framework of plausibility theory and the concrete computational requirements of
programming language implementation. This bridge is essential not merely for practical applica-
tions, but for enabling systematic investigation of fundamental questions about how uncertain
knowledge affects computation.

The questions we seek to address through this computational framework are directly motivated
by the theoretical foundations that Halpern established for plausibility reasoning, but they
require new technical machinery to investigate effectively. How can qualitative plausibility
orderings be represented and manipulated algorithmically within type systems? What are the
computational complexity characteristics of constraint solving over plausibility rankings? Under
what conditions can plausibility-based analysis provide insights that are unavailable through
purely logical or purely probabilistic approaches? How do plausibility assignments compose
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across program boundaries, and what does this tell us about the structure of uncertain knowledge
in computational contexts?

These questions connect our work to several important research directions that have re-
mained largely unexplored. The relationship between plausibility reasoning and gradual typing
suggests possibilities for gradual uncertainty, where specifications begin with coarse qualitative
information and become increasingly quantitative without loss of soundness guarantees. The
connection to probabilistic programming points toward new approaches for reasoning about
programs that manipulate uncertain information. The relationship to knowledge representation
suggests applications in verification of systems that must operate under incomplete or uncertain
specifications.

4.1 Computational Representation of Plausibility

Our approach to making plausibility theory computationally tractable centers on developing
type-level representations that capture the essential structure of plausibility reasoning while
supporting efficient algorithmic manipulation. This requires solving several technical challenges
that are fundamental to the broader research program of computational plausibility reasoning.

The first challenge concerns the representation of plausibility values themselves. While
Halpern’s general framework allows plausibility values to come from arbitrary partially ordered
sets, computational applications require concrete representations that support constraint solving
and logical reasoning. Our choice of natural numbers with the usual ordering provides a compu-
tationally tractable instantiation that preserves the essential ordinal character of plausibility
reasoning while enabling efficient constraint manipulation.

However, this choice raises deeper questions about the relationship between syntactic repre-
sentations and semantic content. When we assign a plausibility ranking to a type expression,
what does this represent about the underlying computational phenomena? How do syntactic
manipulations of rankings correspond to semantic operations on beliefs? These questions are
fundamental to understanding whether computational plausibility reasoning captures the essen-
tial features of uncertain knowledge or merely provides a convenient notation for optimization
heuristics.

Our technical approach addresses these questions by developing a systematic translation
between type-level plausibility expressions and constraint systems that can be solved using
standard SMT techniques. This translation preserves the crucial ordinal relationships while
enabling computational analysis, but it also raises new questions about the completeness and
soundness of the translation process.

Definition 4.1 (Type Plausibility Ranking). Given a type system with types T , a type plausibility
ranking is a function π : T → N ∪ {∞} satisfying:

1. Existence: π−1(0) ̸= ∅ (at least one type receives minimal rank);

2. Monotonicity: If τ1 <: τ2 then π(τ2) ≤ π(τ1) (supertypes are at least as plausible as
subtypes);

3. Consistency: The ranking respects logical relationships between types in ways that preserve
the semantic content of plausibility orderings.

This definition attempts to capture the constraint that plausibility rankings should reflect
meaningful relationships between types rather than arbitrary assignments. The monotonicity
condition, in particular, embodies a crucial principle: weaker assertions should be preferred over
stronger ones when both are plausible, because weaker assertions impose fewer constraints on
the computational context.

The consistency condition is deliberately abstract because the appropriate notion of consis-
tency depends on the specific application domain and the kinds of plausibility reasoning being
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investigated. In our case studies, consistency typically requires that rankings reflect empirically
observable relationships between program behaviors, but the general principle extends beyond
any particular instantiation.

4.2 Primitive Operations and Plausibility Inference

A crucial component of our computational framework concerns how plausibility rankings are as-
signed to primitive operations and how these assignments propagate through compound program
expressions. This is not merely a technical implementation detail, but a fundamental question
about the relationship between local plausibility judgments and global program properties.

The challenge begins with individual primitive operations. Each operation in the programming
language must be associated with a function that maps argument type rankings to result rankings,
capturing how the plausibility of inputs affects the plausibility of outputs. This mapping must
reflect both the semantic properties of the operation and the domain knowledge about when the
operation is likely to succeed or fail.

Definition 4.2 (Primitive Plausibility Map). For a primitive operation op with type signature
τ1 × · · · × τn → τ , the plausibility map πop : (N ∪ {∞})n → N ∪ {∞} specifies the minimum
plausibility ranking required for safe application of op to arguments with the given plausibility
rankings.

The design of these maps raises fundamental questions about the relationship between syn-
tactic type information and semantic plausibility judgments. Consider division as a paradigmatic
example that illustrates both the potential and the challenges of this approach.

For division operations, the plausibility map must capture our intuitions about when division
is likely to succeed without runtime errors. Division by a guaranteed positive number should
receive the minimal ranking (maximum plausibility), reflecting the belief that such operations
are safe in normal execution contexts. Division by an unconstrained real number should receive
a higher ranking, reflecting the possibility that the denominator might be zero. Division by a
guaranteed zero value should receive the maximum ranking (minimum plausibility), reflecting
the certainty that such operations will fail.

However, translating these intuitions into precise plausibility map definitions requires making
explicit choices about how different kinds of uncertainty are weighted against each other. Why
should division by an unconstrained real receive ranking 1 rather than ranking 2? How should
we handle cases where the denominator type provides partial information about its range? These
choices necessarily reflect domain-specific knowledge and application-specific priorities, which
raises questions about the generality and transferability of plausibility-based analysis.

Our approach to these questions is to treat plausibility map design as an empirical research
problem. Rather than claiming that there are uniquely correct plausibility assignments, we
view the maps as hypotheses about the relationship between type information and runtime
behavior that can be validated through experimental investigation. This perspective transforms
the technical challenge of map design into a research opportunity for understanding how
programmers reason about uncertainty and how computational tools can support and augment
this reasoning.

The propagation of plausibility rankings through compound expressions raises additional
theoretical questions about the compositional structure of uncertain knowledge. When multiple
uncertain assumptions must be combined to establish a conclusion, how should their individual
plausibility rankings be composed? Our current approach uses the maximum operation, reflecting
a “weakest link” principle where the overall plausibility is determined by the least plausible
component assumption.

Definition 4.3 (Plausibility Composition). For a compound expression e with immediate
subexpressions e1, . . . , en having plausibility rankings r1, . . . , rn, and applied operation op with
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plausibility map πop, the ranking of e is:

re = max(r1, . . . , rn, πop(r1, . . . , rn))

This compositional rule reflects assumptions about how uncertain beliefs combine, but these
assumptions are themselves subject to investigation. Alternative composition rules might better
capture the structure of uncertain reasoning in different application domains. The maximum
rule assumes that uncertainties compound in the worst-case sense, but other applications might
benefit from composition rules that reflect statistical independence, logical dependency, or
domain-specific combination principles.

These questions about composition connect our work to broader research programs in
uncertain reasoning and computational logic. The relationship between our compositional
approach and classical approaches to reasoning about uncertainty (such as Dempster-Shafer
theory or fuzzy logic) remains largely unexplored. The connections to probabilistic programming
suggest possibilities for hybrid approaches that combine qualitative plausibility reasoning with
quantitative probabilistic analysis.

4.3 Constraint Generation and Plausibility Solving

The translation from plausibility-annotated programs to solvable constraint systems represents a
crucial component of our computational framework, and it raises fundamental questions about the
relationship between qualitative uncertainty reasoning and algorithmic decision procedures. This
translation is not merely a technical implementation detail, but a window into the computational
structure of plausibility reasoning itself.

The constraint generation process begins with the observation that plausibility-ranked type
judgments can be viewed as assertions about the consistency of belief assignments. When
a program is annotated with plausibility rankings, these annotations implicitly assert that
certain combinations of rankings are consistent with the programmer’s beliefs about normal
and exceptional behavior. The constraint solver’s task is to determine whether these assertions
are mutually consistent and, if so, to find ranking assignments that satisfy all constraints
simultaneously.

This perspective transforms questions about program correctness into questions about the
satisfiability of belief systems, connecting our work to fundamental problems in knowledge
representation and automated reasoning. The constraint systems we generate inherit the logical
structure of the underlying plausibility reasoning, which suggests that their computational
properties may reveal insights about the complexity and decidability of uncertain reasoning
more generally.

Our current approach generates constraints of the form ri ≥ f(rj1 , . . . , rjk) where the ri are
plausibility ranking variables and f represents the composition of primitive plausibility maps
according to the program’s syntactic structure. These constraints capture the propagation of
plausibility requirements through the program’s computational dependencies, but they also
embody assumptions about how uncertain knowledge should be combined and propagated.

The satisfiability of these constraint systems depends critically on the properties of the
primitive plausibility maps and the compositional principles used to combine them. In the
general case, constraint solving over arbitrary plausibility rankings could be undecidable, but the
specific structure of the rankings we generate appears to yield tractable constraint systems in
practice. Understanding the theoretical foundations of this tractability is an important direction
for future research.

One particularly interesting aspect of our constraint generation approach is its relationship
to optimization problems rather than pure satisfiability. Rather than simply asking whether a
consistent ranking assignment exists, we typically want to find the “best” assignment according
to some criterion that reflects the programmer’s preferences about uncertainty trade-offs. Our
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current approach uses lexicographic minimization, which prioritizes reducing higher-ranked (less
plausible) assumptions before optimizing lower-ranked ones.

This optimization perspective connects our work to broader research on preference reasoning
and multi-criteria decision making. The lexicographic ordering we employ reflects specific
assumptions about how uncertainty preferences should be structured, but alternative ordering
principles might be more appropriate for different application domains. The investigation of
these alternatives and their computational properties represents an important research direction
for understanding how plausibility reasoning can be tailored to specific problem contexts.

The constraint solving process also raises important questions about the relationship between
syntactic constraint manipulation and semantic plausibility reasoning. When the constraint
solver finds a satisfying assignment of rankings to program expressions, what does this assignment
represent about the underlying beliefs and assumptions? How should programmers interpret and
validate these automatically generated assignments? These questions are crucial for understanding
whether computational plausibility reasoning provides genuine insights about uncertain knowledge
or merely generates formally consistent but semantically meaningless annotations.

5 Case Studies in Computational Plausibility Problems

To demonstrate the research potential of our computational framework, we examine several case
studies that illustrate different classes of plausibility reasoning problems. These examples are
chosen not merely to validate our technical approach, but to highlight the kinds of theoretical
questions that become accessible through computational investigation of plausibility theory.

Each case study represents a different facet of the relationship between uncertain knowl-
edge and computation. The latency scoring example illustrates how domain knowledge about
operational contexts can be formalized as plausibility rankings. The numerical computation ex-
ample demonstrates how mathematical assumptions about problem structure can be represented
and reasoned about computationally. The distributed systems example shows how plausibility
reasoning can capture assumptions about system behavior that are crucial for correctness but
difficult to verify statically.

These case studies collectively demonstrate that the kinds of reasoning programmers engage
in when working with uncertain or incomplete information have systematic structure that can be
captured and manipulated computationally. More importantly, they suggest research directions
for investigating fundamental questions about how uncertain knowledge affects computational
processes.

5.1 Operational Knowledge and Service Behavior

Consider a monitoring system that processes request latency measurements for microservices
in a distributed system, computing health scores that combine latency characteristics with
failure rates. This scenario illustrates how operational knowledge about system behavior can
be formalized as plausibility rankings and how these rankings affect program analysis and
optimization opportunities.

The core computational challenge involves processing streams of latency measurements
and metadata about service behavior to produce robust health assessments. The algorithm
implements a trimmed mean approach: sort latency measurements, remove outliers from the top
and bottom percentiles, compute the mean of remaining measurements, calculate failure ratios,
and combine these metrics according to configurable weightings.

This computational pattern embeds numerous assumptions about operational behavior
that are reasonable in practice but difficult to verify statically. Service latency buckets are
typically non-empty because production services receive continuous traffic. Trimming outliers
usually leaves sufficient data because services under normal load receive many requests per
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measurement interval. Latency values are typically positive and bounded because they reflect
actual computation and communication times. Success counts typically do not exceed total
request counts because of basic accounting invariants.

These assumptions reflect what Halpern would characterize as default knowledge about
system behavior—beliefs about how distributed systems normally operate that are based on
operational experience rather than mathematical proof. The assumptions are not always correct
(services sometimes receive no traffic, measurement systems sometimes produce invalid data,
accounting invariants sometimes fail due to bugs), but they are sufficiently reliable to base
optimization decisions on.

Our computational framework allows these operational assumptions to be made explicit
through plausibility rankings and provides mechanisms for reasoning about their consequences
systematically. When we annotate the latency scoring algorithm with plausibility rankings
that reflect operational knowledge, we create a computational model that captures both the
algorithmic structure and the uncertainty structure of the problem.

1 (assume-plausibility

2 [(latencies (NonEmptyListof PositiveReal)) ; rank 0: normal operation

3 (successes Natural) ; rank 0: valid accounting

4 (alpha (Refine Real (lambda (a) (<= 0 a 1))))] ; rank 0: valid parameters

5 (define n (length latencies))

6 (define k (exact-round (* 0.05 n)))

7 (define trimmed (drop (take (sort latencies <) (- n k)) k))

8 (define mean (/ (apply + trimmed) (length trimmed)))

9 (define fail-ratio (- 1 (/ successes n)))

10 (+ (* alpha mean) (* (- 1 alpha) fail-ratio)))

This annotation makes explicit the assumption that latency lists are normally non-empty,
that accounting data is normally valid, and that configuration parameters are normally within
expected ranges. The computational framework then verifies that under these assumptions, the
algorithm can execute without runtime checking overhead, while providing actionable feedback
when the assumptions conflict with program structure.

The research significance of this example lies not in the specific optimization opportunities
it enables, but in the questions it raises about the computational structure of operational
knowledge. How can operational assumptions be validated systematically? What happens when
assumptions that were valid during development become invalid during deployment? How can
the relationship between operational context and program behavior be characterized formally?

These questions connect our work to important research directions in systems programming,
reliability engineering, and automated reasoning. The framework provides a laboratory for
investigating how domain knowledge about system behavior can be captured, validated, and
leveraged computationally.

5.2 Mathematical Assumptions and Numerical Computation

Numerical computing provides another rich source of plausibility reasoning problems, where
computational algorithms embody assumptions about problem structure that are mathematically
reasonable but not universally valid. Consider matrix computations where algorithms assume
properties like positive definiteness, good conditioning, or specific sparsity patterns.

These mathematical assumptions represent a particularly interesting class of plausibility
problems because they involve relationships between abstract mathematical properties and
concrete computational procedures. When a numerical algorithm assumes that matrices are
well-conditioned, it is making a plausibility judgment about the mathematical structure of the
problem domain, not merely an operational assumption about runtime behavior.

Our computational framework allows these mathematical assumptions to be made explicit
and provides mechanisms for reasoning about their computational consequences. Consider an
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eigenvalue computation that assumes the input matrix has good spectral properties:

1 (assume-plausibility

2 [(matrix (WellConditioned RealMatrix)) ; rank 0: numerical stability

3 (tolerance PositiveReal)] ; rank 0: valid convergence

4 (define eigenvals (iterative-eigensolve matrix tolerance))

5 (define max-eigenval (apply max eigenvals))

6 (define condition-estimate (/ max-eigenval (apply min eigenvals))))

This annotation makes explicit the assumption that the input matrix has spectral properties
that ensure numerical stability of the iterative algorithm. The framework can then verify that
under this assumption, the computation can proceed without extensive runtime conditioning
checks, while providing feedback about what happens when the assumption fails.

The research interest in this example extends beyond the specific numerical algorithm to
broader questions about the relationship between mathematical structure and computational
feasibility. How can assumptions about mathematical structure be validated computationally?
What is the relationship between mathematical plausibility and computational complexity? How
can algorithms be designed to degrade gracefully when mathematical assumptions prove invalid?

These questions suggest research directions that connect our work to important problems
in numerical analysis, computational mathematics, and automated theorem proving. The
framework provides tools for investigating how mathematical knowledge can be integrated into
computational reasoning systematically.

5.3 Distributed Systems and Protocol Assumptions

Distributed systems present yet another class of plausibility reasoning problems, where algorithms
must operate under assumptions about network behavior, timing constraints, and failure patterns
that are probabilistically reasonable but not guaranteed. These assumptions are crucial for
system correctness but difficult to verify statically because they depend on runtime conditions
that are partially outside the system’s control.

Consider a consensus algorithm that assumes bounded message delays and partial synchrony.
These assumptions are not mathematical facts but empirical regularities about network behavior
that hold under normal operating conditions but may be violated during network partitions,
overload conditions, or adversarial attacks.

1 (assume-plausibility

2 [(network-delay (Bounded Natural max-delay)) ; rank 0: normal network

3 (failure-rate (Bounded Real max-failures)) ; rank 0: limited failures

4 (message-ordering PartialOrder)] ; rank 1: best effort delivery

5 (define consensus-result

6 (paxos-consensus proposals network-delay failure-rate))

7 (define safety-check (verify-agreement consensus-result)))

This annotation makes explicit the assumptions about network behavior that the consensus
algorithm requires for correctness. The ranking structure reflects the relative reliability of
different assumptions: bounded delays and failure rates are typically reliable (rank 0), while
message ordering guarantees are less dependable (rank 1).

The research significance of this example lies in its connection to fundamental problems in
distributed systems theory. How can assumptions about network behavior be characterized
formally? What is the relationship between plausibility assumptions and system correctness
guarantees? How can systems be designed to maintain essential properties even when plausibility
assumptions are violated?

These questions suggest research directions that connect our work to important problems in
distributed systems, fault tolerance, and protocol verification. The computational framework
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provides tools for investigating how assumptions about system behavior can be incorporated
into correctness reasoning systematically.

6 Research Directions: Toward Computational Plausibility The-
ory

The case studies we have examined illustrate the potential for computational investigation
of plausibility reasoning, but they also highlight fundamental research questions that require
systematic investigation. Our work opens several interconnected research directions that could
significantly advance our understanding of how uncertain knowledge affects computational
processes.

6.1 Gradual Uncertainty and Refinement

One of the most promising research directions suggested by our work concerns the relationship
between qualitative plausibility reasoning and quantitative probabilistic analysis. Halpern’s
theoretical framework suggests that plausibility measures can serve as stepping stones toward
probabilistic models, but the computational implications of this relationship remain largely
unexplored.

The concept of gradual uncertainty builds on the observation that many computational
problems begin with qualitative information about plausible and implausible behaviors and
gradually acquire more precise quantitative characterizations as additional information becomes
available. A type system that supports gradual uncertainty would allow specifications to begin
with coarse plausibility orderings and become increasingly precise through refinement operations
that preserve soundness guarantees.

This research direction connects to several important problems in programming language
theory. How can type systems be designed to support smooth transitions between qualitative and
quantitative uncertainty specifications? What are the soundness and completeness properties
of refinement operations that map plausibility orderings to probability distributions? How can
automated tools assist programmers in developing appropriate uncertainty specifications for
their problem domains?

The investigation of these questions requires developing new theoretical foundations that
bridge qualitative and quantitative uncertainty reasoning. Our computational framework provides
a platform for experimental investigation of these theoretical questions, enabling systematic
exploration of how different refinement strategies affect program analysis and optimization
opportunities.

6.2 Automated Plausibility Inference

Another important research direction concerns the development of automated techniques for
inferring reasonable plausibility assignments from program structure, execution traces, and
domain knowledge. The manual specification of plausibility rankings, while valuable for research
purposes, imposes significant cognitive overhead that could limit practical adoption of these
techniques.

The challenge of automated inference connects our work to important problems in machine
learning, program analysis, and knowledge representation. How can static analysis techniques
be extended to infer reasonable uncertainty assumptions? What role can dynamic analysis
and profiling play in validating and refining plausibility assignments? How can domain-specific
knowledge be incorporated into automated inference procedures?

These questions suggest several concrete research projects. Machine learning techniques
could be applied to large codebases to identify patterns in how expert programmers structure
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uncertainty assumptions. Static analysis techniques could be developed to identify program
locations where uncertainty assumptions are likely to be important. Dynamic analysis techniques
could be used to validate uncertainty assumptions against actual execution behavior.

The investigation of automated inference techniques also raises fundamental questions about
the relationship between syntactic program structure and semantic uncertainty properties. Under
what conditions can syntactic analysis provide reliable information about semantic uncertainty?
How can automated tools distinguish between genuine uncertainty and mere syntactic complexity?

6.3 Compositional Uncertainty Reasoning

The compositional properties of plausibility reasoning represent another important research
direction that connects our work to fundamental problems in programming language semantics.
How do uncertainty assumptions compose across program boundaries? What are the soundness
and completeness properties of different composition strategies? How can modular reasoning
about uncertainty be supported in large-scale software systems?

These questions are particularly important for understanding how plausibility-based reasoning
can scale to realistic software systems. The composition of uncertainty assumptions across module
boundaries involves both technical challenges (how to represent and manipulate compositional
constraints) and conceptual challenges (what does it mean for uncertainty assumptions to be
compatible across module boundaries).

Our current approach uses simple composition rules based on worst-case analysis, but
alternative composition strategies might better capture the structure of uncertainty in different
application domains. The investigation of these alternatives and their theoretical properties
represents an important research direction for understanding the foundations of compositional
uncertainty reasoning.

6.4 Connections to Probabilistic Programming

The relationship between our work and probabilistic programming represents a particularly rich
area for future research. Probabilistic programming languages provide sophisticated tools for
reasoning about programs that manipulate uncertain information, but they typically require
precise probabilistic specifications that may not be available in many application contexts.

Our plausibility-based approach suggests possibilities for extending probabilistic programming
with qualitative uncertainty specifications that can be gradually refined into quantitative models.
This extension could enable probabilistic programming techniques to be applied to problem
domains where uncertainty information is initially incomplete or imprecise.

The investigation of these connections requires developing new theoretical foundations that
bridge qualitative plausibility reasoning and quantitative probabilistic modeling. How can
plausibility orderings be systematically refined into probability distributions? What are the
soundness and completeness properties of such refinements? How can automated tools assist in
the refinement process?

These questions connect our work to important problems in machine learning, statistical
inference, and automated reasoning. The computational framework we have developed provides
a platform for experimental investigation of these theoretical questions, enabling systematic
exploration of how plausibility reasoning can enhance probabilistic programming techniques.

6.5 Verification and Plausibility

Finally, our work suggests important research directions in program verification that concern
how uncertain knowledge can be incorporated into correctness reasoning. Traditional verification
approaches require precise specifications and complete information about system behavior, but
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many verification problems involve reasoning about systems that must operate under uncertain
or incomplete information.

The integration of plausibility reasoning into verification frameworks could enable new
approaches to verification problems that involve uncertain specifications, incomplete knowledge
about system behavior, or assumptions about operational contexts that are reasonable but not
guaranteed. How can plausibility assumptions be incorporated into verification conditions? What
are the soundness and completeness properties of verification systems that incorporate uncertain
knowledge? How can verification tools provide useful feedback when plausibility assumptions
prove inconsistent with correctness requirements?

These questions connect our work to important problems in formal methods, system verifica-
tion, and automated theorem proving. The investigation of these connections could lead to new
verification techniques that are more robust to uncertainty and more applicable to real-world
verification problems where complete specifications are unavailable.

7 Computational Infrastructure: The Racket Ecosystem for
Plausibility Research

Investigating computational plausibility reasoning requires sophisticated infrastructure that can
bridge theoretical foundations with practical experimentation. The Racket ecosystem provides
uniquely suitable tools for this research program, offering capabilities that would be extremely
difficult to replicate from scratch. This section examines how we leverage Racket’s language-
oriented programming infrastructure to build a computational laboratory for plausibility theory
research.

The choice of Racket is not merely practical convenience—it is fundamental to the feasibility
of systematic computational investigation of plausibility reasoning. The combination of Turnstile
for experimental type system development and Rosette for constraint-based program analysis
provides exactly the computational abstractions needed to translate theoretical concepts from
plausibility theory into concrete computational experiments.

7.1 Language-Oriented Programming for Uncertainty Research

Racket’s language-oriented programming philosophy enables a research methodology that would
be impossible with traditional programming language infrastructure. Rather than being con-
strained by the assumptions and limitations of existing languages, we can design computational
notations that directly reflect the theoretical concepts we want to investigate.

This capability is crucial for plausibility research because uncertainty reasoning involves con-
cepts that do not map naturally onto traditional programming language constructs. Plausibility
orderings, ranking functions, and gradual uncertainty refinement require new linguistic abstrac-
tions that can capture their mathematical structure while supporting practical computational
manipulation.

The macro system in Racket allows us to experiment with different computational representa-
tions of plausibility concepts without committing to a fixed language design. We can prototype
alternative approaches to uncertainty annotation, constraint generation, and solver integration,
evaluating their effectiveness for different classes of plausibility problems.

Domain-Specific Languages for Uncertainty: Our approach uses Racket’s macro system
to create domain-specific languages that make plausibility reasoning natural and accessible.
The assume-plausibility form represents just one possible linguistic interface to plausibility
reasoning—the infrastructure supports experimentation with alternative syntactic and semantic
approaches.
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Consider how different uncertainty reasoning problems might benefit from different linguistic
abstractions:

1 ;; Operational assumptions in system monitoring

2 (with-operational-context

3 [(network-latency (Bounded Real 0 1000)) ; milliseconds

4 (failure-rate (Bounded Real 0 0.1)) ; 10% max

5 (load-factor (Bounded Real 0 2.0))] ; 2x normal

6 (compute-system-health))

7

8 ;; Physical constraints in scientific computing

9 (with-physical-constraints

10 [(temperature (PhysicalUnit Kelvin (> 0))) ; absolute temperature

11 (pressure (PhysicalUnit Pascal (>= 0))) ; non-negative pressure

12 (density (PhysicalUnit kg/m^3 (> 0)))] ; positive density

13 (simulate-fluid-dynamics))

14

15 ;; Mathematical assumptions in numerical algorithms

16 (with-numerical-assumptions

17 [(matrix (WellConditioned RealMatrix)) ; good conditioning

18 (tolerance (PositiveReal)) ; convergence threshold

19 (max-iterations (PositiveInteger))] ; iteration bound

20 (iterative-solve matrix tolerance max-iterations))

Each of these linguistic interfaces captures different aspects of uncertainty reasoning that are
natural for specific problem domains. The underlying computational infrastructure remains the
same—ranking functions and constraint solving—but the surface syntax adapts to domain-specific
reasoning patterns.

7.2 Turnstile: Experimental Type System Development

Turnstile provides the technical foundation for implementing experimental type systems through
macro transformation. For plausibility research, this capability is essential because it allows
rapid prototyping of different approaches to uncertainty typing without the enormous engineering
overhead of implementing new languages from scratch.

Constraint-Based Type Checking: Our integration with Turnstile transforms traditional
type checking into constraint-based reasoning. Rather than hard-coding specific typing rules,
we generate constraint systems that capture the relationships between program structure and
plausibility requirements.

The technical architecture separates concerns cleanly:

1. Syntax Analysis: Turnstile macros traverse program syntax, identifying locations where
plausibility reasoning is relevant

2. Constraint Generation: Based on plausibility maps and composition rules, the system
generates symbolic constraints relating program components

3. Solver Integration: Rosette translates these constraints into satisfiability problems and
attempts to find solutions

4. Code Generation: Based on solver results, appropriate runtime code is generated with
or without runtime checking

This architecture enables systematic experimentation with different aspects of plausibility
reasoning:
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1 ;; Experimenting with different composition strategies

2 (define-composition-rule conservative-max

3 (lambda (subranks op-rank)

4 (max (apply max subranks) op-rank)))

5

6 (define-composition-rule additive-uncertainty

7 (lambda (subranks op-rank)

8 (+ (apply + subranks) op-rank)))

9

10 (define-composition-rule threshold-based

11 (lambda (subranks op-rank threshold)

12 (if (> (apply max subranks) threshold)

13 2 ; definite uncertainty

14 (max (apply max subranks) op-rank))))

Different composition strategies capture different theories about how uncertainty propagates
through computational systems. The Turnstile infrastructure allows these alternatives to be
implemented and evaluated systematically.

Meta-Theoretical Investigation: Turnstile’s macro-based approach enables meta-theoretical
investigation of uncertainty typing systems. We can implement multiple variants of plausibility
reasoning and compare their properties empirically.

For example, we can investigate questions like: How do different ranking function encodings
affect constraint solving performance? What is the relationship between the granularity of
uncertainty tracking and the quality of feedback provided to programmers? How do different
composition rules affect the soundness and completeness of uncertainty reasoning?

These questions require systematic empirical investigation that would be impractical without
Turnstile’s rapid prototyping capabilities.

7.3 Rosette: Constraint Solving for Plausibility Reasoning

Rosette provides the constraint solving infrastructure that makes computational plausibility
reasoning practically feasible. The integration with Rosette transforms abstract questions about
plausibility reasoning into concrete computational problems that can be solved automatically.

Symbolic Execution and Constraint Generation: Rosette’s symbolic execution capabili-
ties allow our system to generate constraint systems that accurately capture the computational
structure of plausibility reasoning problems. Rather than relying on hand-crafted constraint
encodings, we can generate constraints automatically from program structure.

Consider how constraint generation works for a realistic plausibility reasoning problem:

1 ;; Source program with plausibility annotations

2 (assume-plausibility

3 [(measurements (NonEmptyListof PositiveReal))

4 (threshold PositiveReal)]

5 (define sorted-data (sort measurements <))

6 (define median (list-ref sorted-data (quotient (length sorted-data) 2)))

7 (define outliers (filter (lambda (x) (> x (* 3 median))) sorted-data))

8 (length outliers))

9

10 ;; Generated constraint system (simplified)

11 (define-symbolic r_measurements r_threshold r_sorted r_median

12 r_outliers r_result integer?)

13

14 (assert (= r_measurements 0)) ; assumption: non-empty positive reals
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15 (assert (= r_threshold 0)) ; assumption: positive threshold

16

17 ;; Sort operation: rank depends on input

18 (assert (>= r_sorted (max r_measurements (plausibility-rank ’sort))))

19

20 ;; List-ref operation: requires non-empty list

21 (assert (>= r_median (max r_sorted (plausibility-rank ’list-ref))))

22

23 ;; Filter operation: always safe

24 (assert (>= r_outliers (max r_sorted r_median (plausibility-rank ’filter))))

25

26 ;; Length operation: always safe

27 (assert (>= r_result (max r_outliers (plausibility-rank ’length))))

Rosette’s symbolic execution environment automatically generates these constraints as the
Turnstile macros expand, ensuring that the constraint system accurately reflects both the
program structure and the plausibility reasoning requirements.

Optimization and Solution Strategy: Rosette’s support for optimization problems (not
just satisfiability) is crucial for implementing the lexicographic minimization strategy that
makes plausibility reasoning practical. Traditional SMT solving focuses on finding any solution
that satisfies constraints, but plausibility reasoning requires finding solutions that minimize
uncertainty requirements.

The encoding of lexicographic minimization requires sophisticated constraint formulation:

1 ;; Minimize uncertainty requirements lexicographically

2 (define objective

3 (apply +

4 (for/list ([var rank-variables]

5 [weight (reverse exponential-weights)])

6 (* weight (rank-indicator var)))))

7

8 (optimize #:minimize objective

9 #:guarantee (all-constraints-satisfied))

This optimization formulation ensures that solutions with lower maximum ranks are preferred,
with ties broken by considering the distribution of ranks across program components.

Counterexample Generation and Analysis: When plausibility constraints cannot be satis-
fied, Rosette provides detailed counterexample information that can be translated into actionable
feedback for researchers and programmers. This capability is essential for understanding the
boundaries of plausibility reasoning approaches.

For example, when investigating the limits of a particular uncertainty reasoning strategy,
Rosette can generate minimal examples that demonstrate where the approach fails:

1 ;; Attempt to satisfy impossible constraints

2 (assume-plausibility

3 [(data (Listof Real)) ; might be empty

4 (threshold PositiveReal)] ; positive threshold

5 (define first-element (car data)) ; requires non-empty

6 (> first-element threshold))

7

8 ;; Rosette generates counterexample:

9 ;; data = ’() (empty list)

10 ;; threshold = 1.0

11 ;; car operation fails on empty list

12 ;; Minimum fix: strengthen data assumption to (NonEmptyListof Real)
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This counterexample generation enables systematic exploration of the space of plausibility
reasoning problems and identification of fundamental limitations in different approaches.

7.4 Integration with Existing Racket Infrastructure

Our plausibility reasoning framework integrates seamlessly with existing Racket tools and
libraries, enabling research that leverages the broader Racket ecosystem rather than requiring
completely isolated development.

Contracts and Behavioral Specifications: Racket’s contract system provides a natural
baseline for comparing plausibility-based approaches with runtime checking approaches. We can
implement the same behavioral specifications using both contracts and plausibility annotations,
enabling systematic comparison of their trade-offs.

1 ;; Contract-based specification

2 (define/contract score-service

3 (-> (non-empty-listof positive-real?) natural? (real-in 0 1) real?)

4 (lambda (latencies successes alpha)

5 ...)) ; runtime checking on every call

6

7 ;; Plausibility-based specification

8 (define (score-service latencies successes alpha)

9 (assume-plausibility

10 [(latencies (NonEmptyListof PositiveReal))

11 (successes Natural)

12 (alpha (Real-in 0 1))]

13 ...)) ; static verification when assumptions hold

This comparison enables quantitative evaluation of when plausibility reasoning provides
advantages over traditional approaches and when it faces fundamental limitations.

Typed Racket Integration: The integration with Typed Racket allows investigation of
how plausibility reasoning interacts with traditional static typing. Can plausibility annotations
enhance the precision of existing type systems? How do plausibility requirements compose with
traditional type requirements across module boundaries?

These questions are crucial for understanding how uncertainty reasoning can be integrated
with existing programming language infrastructure rather than requiring wholesale replacement
of existing tools.

Testing and Property-Based Verification: Racket’s testing infrastructure and property-
based testing libraries enable systematic evaluation of plausibility reasoning implementations.
We can generate test cases that explore the boundaries of different approaches and verify that
theoretical properties hold in practice.

1 ;; Property-based testing of plausibility reasoning

2 (define (test-plausibility-consistency)

3 (check-property

4 (for/and ([program (generate-random-programs)]

5 [assumptions (generate-plausibility-assumptions)])

6 (implies (plausibility-consistent? program assumptions)

7 (runtime-safe? program assumptions)))))

This testing capability enables empirical validation of theoretical claims about plausibility rea-
soning and identification of corner cases where theoretical predictions diverge from computational
reality.
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8 Computational Investigation: Service Monitoring as a Plausi-
bility Research Laboratory

To demonstrate how our computational framework enables systematic investigation of plausibility
reasoning problems, we examine service monitoring in distributed systems as a rich source of
uncertainty reasoning challenges. This case study illustrates how computational plausibility
research can illuminate fundamental questions about uncertainty reasoning that extend well
beyond the specific application domain.

The choice of service monitoring is deliberate: it represents a class of computational problems
where operational assumptions about system behavior are crucial for algorithmic correctness
but cannot be verified statically. These problems provide natural laboratories for investigating
how different approaches to uncertainty reasoning affect computational processes and what can
be learned from systematic computational investigation.

8.1 Plausibility Reasoning Problems in Operational Contexts

Service monitoring algorithms embody numerous assumptions about operational behavior that
reflect what we might call “operational plausibility”—beliefs about how distributed systems
normally behave based on operational experience rather than mathematical proof. Consider a
health scoring algorithm that processes latency measurements:

1 (define (robust-health-score latencies successes alpha)

2 (assume-plausibility

3 [(latencies (NonEmptyListof PositiveReal)) ; services receive traffic

4 (successes Natural) ; accounting is valid

5 (alpha (Real-in 0 1))] ; configuration is sensible

6 (define n (length latencies))

7 (define k (exact-round (* 0.05 n)))

8 (define trimmed (drop (take (sort latencies <) (- n k)) k))

9 (define mean-latency (/ (apply + trimmed) (length trimmed)))

10 (define failure-rate (- 1 (/ successes n)))

11 (+ (* alpha mean-latency) (* (- 1 alpha) failure-rate))))

This algorithm makes explicit several classes of plausibility assumptions that raise fundamental
research questions:

Temporal Plausibility: The assumption that services receive traffic reflects beliefs about
temporal patterns—that measurement intervals usually capture some activity. This raises ques-
tions about how temporal regularity can be characterized and reasoned about computationally.

Operational Plausibility: The assumption that accounting data is valid reflects beliefs
about system reliability—that monitoring infrastructure usually functions correctly. This
raises questions about how system-level assumptions can be validated and composed across
organizational boundaries.

Configurational Plausibility: The assumption that parameters are sensible reflects beliefs
about human behavior—that configuration management usually prevents obviously incorrect
values. This raises questions about how domain knowledge can be captured and leveraged in
automated reasoning.

Each of these assumption classes represents different aspects of the relationship between
uncertain knowledge and computational feasibility that can be investigated systematically using
our framework.
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8.2 Investigating Compositional Uncertainty through Computational Experi-
ments

Our computational framework enables systematic investigation of how uncertainty assumptions
compose across algorithmic boundaries. Consider how the trimming operation in the health
scoring algorithm creates complex dependencies between assumptions:

1 ;; Investigating composition of measurement assumptions

2 (define (study-trimming-composition n-values trim-percentages)

3 (for/list ([n n-values]

4 [trim-pct trim-percentages])

5 (define k (exact-round (* trim-pct n)))

6 (define remaining (- n (* 2 k)))

7 (assume-plausibility

8 [(measurements (Listof PositiveReal))]

9 (cond

10 [(> remaining 0)

11 (analysis-rank 0 ‘‘trimming preserves data’’)]

12 [(= remaining 0)

13 (analysis-rank 1 ‘‘trimming produces boundary case’’)]

14 [(< remaining 0)

15 (analysis-rank 2 ‘‘trimming eliminates all data’’)]))))

16

17 ;; Results reveal systematic patterns in assumption composition

18 (study-trimming-composition

19 ’(5 10 20 50 100) ; different data volumes

20 ’(0.01 0.05 0.10 0.25)) ; different trimming aggressiveness

This computational investigation reveals systematic patterns in how operational assumptions
interact with algorithmic parameters. The results provide empirical data about when different
uncertainty reasoning strategies are effective and when they face fundamental limitations.

The research value lies not in optimizing this specific algorithm, but in developing systematic
understanding of how assumption composition affects computational feasibility. What general
principles govern when uncertainty assumptions can be composed safely? How do different
composition strategies affect the robustness of computational reasoning?

8.3 Automated Discovery of Plausibility Boundaries

Our constraint-solving infrastructure enables automated discovery of the boundaries where
plausibility assumptions fail. This capability provides a computational tool for investigating
fundamental questions about uncertainty reasoning:

1 ;; Systematic exploration of assumption boundaries

2 (define (explore-assumption-boundaries)

3 (define test-cases

4 (for*/list ([traffic-volume ’(0 1 10 100 1000)]

5 [failure-rate ’(0.0 0.01 0.1 0.5 0.9)]

6 [trim-factor ’(0.01 0.05 0.1 0.25 0.5)])

7 (list traffic-volume failure-rate trim-factor)))

8

9 (for/list ([test-case test-cases])

10 (match-define (list volume failure trim) test-case)

11 (define measurements (generate-latencies volume failure))

12 (define result

13 (with-handlers ([plausibility-violation?

14 (lambda (e) (plausibility-error-rank e))])

15 (robust-health-score measurements

16 (- volume (exact-round (* failure volume)))
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17 0.7)))

18 (list test-case result)))

19

20 ;; Analysis reveals systematic patterns in failure modes

21 (define boundary-analysis

22 (group-by second (explore-assumption-boundaries)))

This automated exploration generates empirical data about when operational assumptions
break down and what kinds of violations occur most frequently. The resulting dataset enables
systematic investigation of questions like:

- Are there universal patterns in how operational assumptions fail across different domains?
- Can failure modes be characterized mathematically in ways that inform algorithm design? -
How do assumption violations propagate through complex computational systems?

8.4 Comparative Analysis of Uncertainty Reasoning Strategies

Our framework enables systematic comparison of different approaches to handling uncertainty,
providing empirical data about their relative strengths and limitations:

1 ;; Compare different uncertainty handling strategies

2 (define (compare-uncertainty-strategies test-data)

3 (define strategies

4 (list

5 ;; Defensive programming: handle all edge cases

6 (lambda (measurements successes alpha)

7 (cond [(empty? measurements) 0.0]

8 [(zero? successes) 1.0]

9 [else (defensive-health-score measurements successes alpha)]))

10

11 ;; Contract-based: runtime checking

12 (lambda (measurements successes alpha)

13 (with-contracts

14 [(measurements (non-empty-listof positive-real?))

15 (successes natural?)

16 (alpha (real-in 0 1))]

17 (contract-health-score measurements successes alpha)))

18

19 ;; Plausibility-based: assumption tracking

20 (lambda (measurements successes alpha)

21 (assume-plausibility

22 [(measurements (NonEmptyListof PositiveReal))

23 (successes Natural)

24 (alpha (Real-in 0 1))]

25 (plausible-health-score measurements successes alpha)))))

26

27 (for/list ([strategy strategies]

28 [name ’(‘‘defensive" "contracts" "plausibility’’)])

29 (define results (evaluate-strategy strategy test-data))

30 (list name

31 (strategy-performance results)

32 (strategy-safety results)

33 (strategy-expressiveness results))))

This comparative analysis generates quantitative data about the trade-offs between different
uncertainty reasoning approaches. The results inform fundamental questions about uncertainty
reasoning:

- Under what conditions do different uncertainty reasoning strategies provide advantages? -
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How do performance, safety, and expressiveness trade off across different approaches? - Can
hybrid approaches combine the advantages of different strategies?

8.5 Investigating Gradual Uncertainty Refinement

One of the most important research questions suggested by our work concerns how qualitative
plausibility assumptions can be gradually refined into quantitative probabilistic models. Our
computational framework enables systematic investigation of this question:

1 ;; Systematic study of uncertainty refinement

2 (define (study-uncertainty-refinement operational-data)

3 ;; Start with qualitative plausibility orderings

4 (define initial-assumptions

5 ’((traffic-volume . normal) ; rank 0: typical load

6 (failure-rate . low) ; rank 0: reliable services

7 (measurement-accuracy . good))) ; rank 0: monitoring works

8

9 ;; Refine using empirical data

10 (define refined-assumptions

11 (for/list ([assumption initial-assumptions])

12 (match-define (cons variable . quality) assumption)

13 (define empirical-distribution

14 (extract-distribution operational-data variable))

15 (define quantitative-refinement

16 (refine-plausibility-to-probability quality empirical-distribution))

17 (cons variable quantitative-refinement)))

18

19 ;; Compare qualitative vs quantitative reasoning

20 (define qualitative-analysis

21 (analyze-with-plausibility initial-assumptions operational-data))

22 (define quantitative-analysis

23 (analyze-with-probabilities refined-assumptions operational-data))

24

25 (compare-analysis-results qualitative-analysis quantitative-analysis))

This investigation generates empirical data about the relationship between qualitative and
quantitative uncertainty reasoning. The results inform crucial theoretical questions:

- Under what conditions do qualitative plausibility orderings provide reliable foundations
for quantitative analysis? - How can refinement procedures be designed to preserve essential
uncertainty relationships? - What are the computational trade-offs between qualitative and
quantitative uncertainty reasoning?

8.6 Research Insights and Broader Implications

The computational investigations enabled by our framework generate insights that extend well
beyond the specific domain of service monitoring. The systematic study of plausibility reasoning
problems reveals patterns and principles that appear to be general:

Hierarchical Uncertainty Structure: Operational domains exhibit hierarchical uncer-
tainty structure where assumptions at different levels (hardware reliability, software correctness,
operational procedures) interact in systematic ways. This suggests research directions for under-
standing how uncertainty hierarchies can be characterized and reasoned about computationally.

Assumption Locality: Many plausibility assumptions have natural locality properties—they
apply to specific operational contexts or temporal intervals rather than globally. This suggests
research opportunities for developing modular uncertainty reasoning techniques that can compose
local assumptions into global system properties.
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Dynamic Assumption Validation: The effectiveness of plausibility assumptions depends
on operational context that changes over time. This suggests research directions for understanding
how uncertainty assumptions can be validated and updated dynamically as operational conditions
change.

Domain-Specific Patterns: Different operational domains exhibit characteristic patterns
in their uncertainty structure. This suggests research opportunities for developing domain-specific
languages and reasoning techniques that capture these patterns systematically.

These insights suggest that computational investigation of plausibility reasoning can con-
tribute to fundamental understanding of uncertainty reasoning that applies across many domains.
The service monitoring case study provides just one example of how systematic computational
investigation can illuminate theoretical questions that are difficult to address through purely
theoretical analysis.

9 Conclusion and Future Research Directions

This work represents an initial exploration of computational approaches to plausibility reasoning
based on Halpern’s theoretical framework. Our primary contribution is demonstrating that
systematic computational investigation of plausibility problems is both feasible and potentially
valuable for advancing our understanding of how uncertain knowledge affects computational
processes.

The theoretical foundations we have established connect qualitative uncertainty reasoning
with practical program analysis techniques through ranking functions and constraint solving.
Our case studies illustrate how this approach can make explicit the kinds of assumptions that
are often implicit in computational reasoning about uncertain domains.

9.1 Research Contributions

Our work makes several interconnected contributions to the study of computational plausibility
reasoning:

Theoretical Framework: We have established connections between Halpern’s plausibility
measures, Spohn’s ranking functions, and computational constraint solving that provide a
principled foundation for investigating plausibility problems systematically.

Computational Implementation: We have developed a prototype computational frame-
work that demonstrates how plausibility reasoning can be integrated with practical program
analysis techniques, providing a platform for experimental investigation of theoretical questions.

Case Study Analysis: Through detailed examination of problems in distributed systems
monitoring, numerical computation, and operational reasoning, we have identified classes of
computational problems where plausibility reasoning provides valuable insights.

Research Methodology: Our approach demonstrates how computational experimentation
can complement theoretical investigation in uncertainty reasoning research, enabling systematic
exploration of questions that are difficult to address through purely theoretical methods.

9.2 Fundamental Research Questions

Our work has identified several fundamental research questions that could significantly advance
our understanding of computational plausibility reasoning:

Gradual Uncertainty: How can qualitative plausibility orderings be systematically refined
into quantitative probabilistic models? What are the soundness and completeness properties of
such refinements? Under what conditions do plausibility assumptions provide reliable foundations
for probabilistic reasoning?

Compositional Reasoning: How do plausibility assumptions compose across computational
boundaries? What are the fundamental principles governing how uncertainty propagates through
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complex computational systems? How can modular reasoning about uncertainty be supported
systematically?

Automated Inference: How can automated techniques infer reasonable plausibility as-
sumptions from program structure, execution traces, and domain knowledge? What is the
relationship between syntactic program structure and semantic uncertainty properties? How can
domain-specific knowledge be incorporated into automated reasoning procedures?

Verification Integration: How can plausibility reasoning be integrated with formal
verification techniques? What new classes of verification problems become tractable when
uncertain knowledge can be represented systematically? How can verification tools provide
meaningful feedback when plausibility assumptions conflict with correctness requirements?

9.3 Connections to Broader Research

Our work connects to several important research areas that could benefit from systematic
investigation of plausibility reasoning:

Probabilistic Programming: The relationship between qualitative plausibility reason-
ing and quantitative probabilistic modeling suggests opportunities for extending probabilistic
programming techniques to domains where uncertainty information is initially incomplete or
imprecise.

Knowledge Representation: Computational plausibility reasoning provides tools for
investigating how domain knowledge can be captured, validated, and leveraged in automated
reasoning systems, connecting to important problems in artificial intelligence and knowledge-
based systems.

Software Engineering: The systematic treatment of uncertainty assumptions could lead to
new approaches for managing complexity in large-scale software systems, particularly in domains
where operational assumptions significantly affect system behavior.

Formal Methods: Integration of plausibility reasoning with verification techniques could
enable new approaches to correctness reasoning in systems that must operate under uncertain
or incomplete information.

9.4 Limitations and Future Work

While our work demonstrates the potential for computational investigation of plausibility
reasoning, several important limitations suggest directions for future research:

Theoretical Foundations: The relationship between our computational approach and
the full richness of plausibility theory requires further investigation. Important concepts like
conditional plausibility, dynamic plausibility updating, and multi-agent plausibility reasoning
are not addressed by our current framework.

Scalability: The computational complexity of plausibility constraint solving needs sys-
tematic investigation to understand how the approach scales to realistic software systems.
Alternative constraint solving strategies and approximation techniques may be required for
practical deployment.

Empirical Validation: The effectiveness of plausibility reasoning requires evaluation
through substantial empirical studies with real programmers working on real problems. Develop-
ing appropriate evaluation criteria and benchmark suites represents an important methodological
challenge.

Tool Integration: Practical adoption requires integration with existing software develop-
ment tools and workflows. Understanding how plausibility reasoning can be made accessible to
working programmers requires substantial user interface and developer experience research.
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9.5 Long-term Vision

Looking beyond the immediate technical contributions, our work suggests a longer-term vision for
computational uncertainty reasoning. As computational systems become increasingly complex
and are deployed in increasingly uncertain environments, the ability to reason systematically
about uncertainty assumptions becomes increasingly important.

The computational framework we have developed provides a foundation for investigating
these challenges systematically. By making uncertainty assumptions explicit and providing tools
for reasoning about their computational consequences, we enable new approaches to designing
systems that are robust to uncertainty while maintaining efficiency in common cases.

This vision connects to broader questions about the relationship between computation and
uncertainty that extend well beyond programming language research. How can computational
systems maintain essential properties when operating under incomplete or uncertain information?
How can automated reasoning assist human experts in making decisions under uncertainty? How
can the reliability of computational systems be characterized when they depend on assumptions
that cannot be verified completely?

These questions suggest research opportunities that could benefit many areas of computer
science and engineering. Our work provides one approach to investigating these questions
systematically, but much work remains to be done to realize the full potential of computational
plausibility reasoning.
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